ELEMENTS OF GEOMETRIC QUANTIZATION & APPLICATIONS TO FIELDS AND FLUIDS

V. P. NAIR

CITY COLLEGE OF THE CUNY

2nd Autumn School on High Energy Physics & Quantum Field Theory
YEREVAN, ARMENIA
OCTOBER 6-7, 2014

V.P. NAIR Geometric Quantization October 6-10, 2014

Quantum theory is defined as a unitary irreducible representation of the algebra of observables.

Geometric quantization gives a way to realize this, elucidating the role of the geometry and topology of the phase space.

- Classical phase space dynamics
- Pre-quantum Hilbert space, operators, polarization
- Role of topology: $\mathcal{H}^1(M,\mathbb{R}), \ \mathcal{H}^2(M,\mathbb{R})$
- Quantizing S^2 and G/H
- Chern-Simons theory (and WZW theory)
- θ -vacua in gauge theories
- Statistics of holes in the fractional quantum Hall effect
- Fluid dynamics (Group theoretic approach and anomalies)

THE SYMPLECTIC STRUCTURE

Phase space = A smooth even dimensional manifold M endowed with a symplectic structure Ω

- ullet Ω is a differential 2-form on M which is closed and nondegenerate.
 - Closed: $d\Omega = 0$
 - Nondegenerate: For any vector field ξ on M, $i_{\xi}\Omega = 0 \Rightarrow \xi = 0$

$$\Omega \ = \ \tfrac{1}{2} \ \Omega_{\mu\nu} \ dq^\mu \wedge dq^\nu$$

• The condition $d\Omega = 0$ becomes

$$\begin{split} d\Omega &= \frac{\partial \Omega_{\mu\nu}}{\partial q^{\alpha}} dq^{\alpha} \wedge dq^{\mu} \wedge dq^{\nu} \\ &= \frac{1}{3} \left[\frac{\partial \Omega_{\mu\nu}}{\partial q^{\alpha}} + \frac{\partial \Omega_{\alpha\mu}}{\partial q^{\nu}} + \frac{\partial \Omega_{\nu\alpha}}{\partial q^{\mu}} \right] dq^{\alpha} \wedge dq^{\mu} \wedge dq^{\nu} \\ &= 0 \end{split}$$

• Interior contraction with $\xi = \xi^{\mu}(\partial/\partial q^{\mu})$ is

$$i_{\xi}\Omega=\xi^{\mu}\Omega_{\mu\nu}dq^{\nu}$$

$$i_{\xi}\Omega=0 \Rightarrow \xi=0 \equiv \xi^{\mu}\Omega_{\mu\nu}=0 \Rightarrow \xi^{\mu}=0$$
; $\iff \Omega$ is nondegenerate as a matrix

THE SYMPLECTIC STRUCTURE (cont'd.)

• Inverse of Ω can be defined by

$$\Omega_{\mu\nu} \; \Omega^{\nu\alpha} = \delta_{\mu}^{\;\alpha}$$

(If Ω has zero modes, one has gauge symmetries.)

• Since $d\Omega = 0$, we can write

$$\Omega = d\mathcal{A} \qquad \Omega_{\mu\nu} = \frac{\partial}{\partial q^{\mu}} \mathcal{A}_{\nu} - \frac{\partial}{\partial q^{\nu}} \mathcal{A}_{\mu}$$

- What are the qualifications to this statement?
 - If there are noncontractible 2d-surfaces Σ such that

$$\int_{\Sigma}\Omega\neq0$$

then $\mathcal A$ cannot exist globally. (Equivalent to $\mathcal H^2(M) \neq 0$; e.g. CS, WZW theories)

- Even if $\mathcal{H}^2(M) = 0$, one can have inequivalent \mathcal{A} 's. For example, \mathcal{A} and $\mathcal{A} + A$ give same Ω if dA = 0.
 - Evidently $A = d\Lambda$ is one possibility (Canonical transformations)
 - One can have $A \neq d\Lambda$ with $dA = 0 \iff \mathcal{H}^1(M) \neq 0$ (e.g. θ -vacua)

CANONICAL TRANSFORMATIONS

- Transformations of (phase space) coordinates which preserve Ω are canonical transformations.
- For infinitesimal transformations, $q^{\mu} \rightarrow q^{\mu} + \xi^{\mu}$, change in Ω is

$$\delta\Omega = \left[\frac{1}{2}\Omega_{\mu\nu}(q+\xi)d(q^{\mu}+\xi^{\mu})\wedge d(q^{\nu}+\xi^{\nu}) - \frac{1}{2}\Omega_{\mu\nu}(q)dq^{\mu}\wedge dq^{\nu}\right] \equiv L_{\xi}\Omega$$

$$= d(i_{\xi}\Omega) + i_{\xi}d\Omega = d(i_{\xi}\Omega)$$

$$= 0$$

The solution is $i_{\mathcal{E}}\Omega = -df$ (if $\mathcal{H}^1(M) = 0$).

- Conversely, for any function f, one can define $\xi^{\mu} = \Omega^{\mu\nu} \partial_{\nu} f \Longrightarrow L_{\xi} \Omega = 0$.
- This leads to

Functions on $M \iff \text{Vector fields } \underbrace{\text{which preserve } \Omega}$

Generating function of canonical transformation

Hamiltonian vector fields

CANONICAL TRANSFORMATIONS (cont'd.)

• If ξ and η preserve Ω , so does their Lie commutator

$$[\xi,\eta]^{\mu} = \xi^{\nu} \partial_{\nu} \eta^{\mu} - \eta^{\nu} \partial_{\nu} \xi^{\mu}$$

• If $\xi \leftrightarrow f$ and $\eta \leftrightarrow g$, then there is a function corresponding to $[\xi, \eta]$; this is called the Poisson bracket $-\{f, g\}$ and is defined by

$$\{f,g\}=i_\xi i_\eta\Omega=\eta^\mu\xi^\nu\Omega_{\mu\nu}=-i_\xi dg=i_\eta df=\Omega^{\mu\nu}\partial_\mu f\partial_\nu g$$

• The Poisson bracket obeys

$$\{f,g\} = -\{g,f\}$$

$$\{f,\{g,h\}\} + \{h,\{f,g\}\} + \{g,\{h,f\}\} = 0$$

 Poisson brackets are important because the change in a function on phase space due to a canonical transformation is

$$\delta F = \xi^{\mu} \partial_{\mu} F = \{ F, f \}$$

CANONICAL TRANSFORMATIONS (cont'd.)

• The change in the canonical 1-form is given by

$$\delta \mathcal{A} = L_{\xi} \mathcal{A} = d(i_{\xi} \mathcal{A} - f) = d\Lambda$$

Classical dynamics is given by

$$\Omega_{\mu\nu}\frac{\partial q^{\nu}}{\partial t} = \frac{\partial H}{\partial q^{\mu}}$$

• This can be obtained from an action

$$S = \int_{t_i}^{t_f} dt \, \left(\mathcal{A}_{\mu} \frac{dq^{\mu}}{dt} \, - \, H \right)$$

Variation of the action gives

$$\delta \mathcal{S} = i_{\xi} \mathcal{A}(t_f) - i_{\xi} \mathcal{A}(t_i) + \int dt \, \left(\Omega_{\mu\nu} \frac{dq^{\nu}}{dt} - \frac{\partial H}{\partial q^{\mu}} \right) \xi^{\mu}$$

• Given the action, the boundary term in its variation can be used to identify $\mathcal A$ and, hence, Ω .

CANONICAL TRANSFORMATIONS (cont'd.)

As an example, consider the usual scalar field theory with

$$S = \int d^4x \, \left[\frac{1}{2} \dot{\varphi}^2 - \frac{1}{2} (\nabla \varphi)^2 - \frac{1}{2} m^2 \varphi^2 - \alpha \varphi^4 \right]$$

The variation of the action leads, upon time-integration, to the boundary term

$$\delta \mathcal{S} = \int d^3 x \, \dot{\varphi} \, \delta \varphi \Big]_{t_i}^{t_f} + \int d^4 x \, \left[\cdots \right] \implies \mathcal{A} = \int d^3 x \, \dot{\varphi} \, \delta \varphi$$

A less obvious case is the quantization in lightcone coordinates. Define

$$u = \frac{1}{\sqrt{2}}(t+z),$$
 $v = \frac{1}{\sqrt{2}}(t-z)$

In this case

$$\mathcal{S} = \int \text{d} u \, \text{d} v \, \text{d}^2 x^T \, \left[\partial_u \varphi \partial_v \varphi - \cdots \right] \ \, \Longrightarrow \, \mathcal{A} = \int \text{d} v \, \text{d}^2 x^T \, \partial_v \varphi \, \delta \varphi$$

Quantum Theory = Unitary Irreducible Representation of the Algebra of Observables

- The problem of quantization is: How do we realize this explicitly?
 - Canonical transformations
 ⇔ Unitary transformations

 - Ensure irreducibility
- Geometric quantization provides a way to do this

STRATEGY:

- 1. Define pre-quantum wave functions and pre-quantum operators
- 2. Impose a polarization to achieve irreducibility

QUANTIZATION (cont'd.)

• Since canonical transformations are $A \to A + d\Lambda$, we consider wave functions to have the property

$$\Psi(q) \to e^{i\Lambda} \ \Psi(q), \qquad \mathcal{A} \to \mathcal{A} + d\Lambda$$

- Ψ depends on all phase space coordinates. They are analogous to fields coupled to a U(1) gauge field A. (They are sections of a line bundle on M with curvature Ω .)
- ullet The Ψ 's are pre-quantum wave functions and form a (pre-quantum) Hilbert space with the inner product

$$(1|2) = \int d\sigma(M) \ \Psi_1^* \ \Psi_2$$

 $d\sigma(M) = \Omega \wedge \Omega \cdots \wedge \Omega \sim \det(\Omega) d^{2n}q.$

• How does Ψ change under $q^{\mu} \to q^{\mu} + \xi^{\mu}$? Under such a change, $A \to A + i_{\xi}A - f$, so that

$$\begin{split} \delta\Psi &=& \xi^{\mu}\partial_{\mu}\Psi - i(i_{\xi}\mathcal{A} - f)\Psi \\ &=& \xi^{\mu}\left(\partial_{\mu} - i\mathcal{A}_{\mu}\right)\Psi + if\Psi = \left(\xi^{\mu}\mathcal{D}_{\mu} + if\right)\Psi \end{split}$$

The first term gives change of Ψ as a function, the second compensates for the change of \mathcal{A} .

V.P. NAIR Geometric Quantization October 6-10, 2014 10 / 84

lacktriangle Define the pre-quantum operator corresponding to f as

$$\mathcal{P}(f) = -i(\xi \cdot \mathcal{D} + if)$$

• In terms of Hamiltonian vector fields, $f \leftrightarrow \xi$, $g \leftrightarrow \eta$, $\{f,g\} \leftrightarrow -[\xi,\eta]$; this gives

$$\begin{split} [\mathcal{P}(f), \mathcal{P}(g)] &= [-i\xi \cdot \mathcal{D} + f, -i\eta \cdot \mathcal{D} + g] \\ &= -[\xi^{\mu}\mathcal{D}_{\mu}, \eta^{\nu}\mathcal{D}_{\nu}] - i\xi^{\mu}[\mathcal{D}_{\mu}, g] + i\eta^{\mu}[\mathcal{D}_{\mu}, f] \\ &= i\xi^{\mu}\eta^{\nu}\Omega_{\mu\nu} - (\xi^{\mu}\partial_{\mu}\eta^{\nu})\mathcal{D}_{\nu} + (\eta^{\mu}\partial_{\mu}\xi^{\nu})\mathcal{D}_{\nu} - i\xi^{\mu}\partial_{\mu}g + i\eta^{\mu}\partial_{\mu}f \\ &= i\left(-\xi^{\mu}\eta^{\nu}\Omega_{\mu\nu} + i[\xi, \eta] \cdot \mathcal{D}\right) \\ &= i\left(-i\left(i_{[\eta, \xi]}\mathcal{D}\right) + \{f, g\}\right) \\ &= i\mathcal{P}(\{f, g\}) \end{split}$$

 The pre-quantum operators form a representation of the Poisson bracket algebra of functions on the phase space, with [A, B] ~ i{A, B}.

QUANTIZATION (cont'd.)

- We get a representation, but this is reducible in general, since Ψ depends on all phase space variables.
- Illustrate by example: Point-particle in one space dimension

$$\Omega = dp \wedge dx, \qquad \mathcal{A} = p \, dx$$

Hamiltonian vector fields and pre-quantum operators for q and p are

$$x \longleftrightarrow -\frac{\partial}{\partial p},$$
 $p \longleftrightarrow \frac{\partial}{\partial x}$
$$\mathcal{P}(x) = i\frac{\partial}{\partial p} + x,$$

$$\mathcal{P}(p) = -i\left(\frac{\partial}{\partial x} - ip\right) + p = -i\frac{\partial}{\partial x}$$

 $[\mathcal{P}(x), \mathcal{P}(p)] = i$, so that we have a representation of the Poisson bracket algebra.

Consider a subset of wave functions obeying

$$\frac{\partial \Psi}{\partial p} = 0$$

In this case, $\mathcal{P}(x) = x$, $\mathcal{P}(p) = -i\frac{\partial}{\partial x}$, which still obey $[\mathcal{P}(x), \mathcal{P}(p)] = i$.

We have a representation on a subspace \Longrightarrow previous representation is reducible.

QUANTIZATION (cont'd.)

- Obtain irreducibility by subsidiary conditions on Ψ which restrict its dependence to half the number of variables (Choice of polarization).
- Choose *n* vector fields $P_i = P_i^{\mu}(\partial/\partial q^{\mu})$, obeying

$$\Omega_{\mu\nu} P_i^{\mu} P_j^{\nu} = 0$$

and impose

$$P_i^{\mu} \mathcal{D}_{\mu} \Psi = 0$$

The vectors P_i define the polarization. The restricted wave functions are the true wave functions of the theory.

• Integrability conditions for this:

$$[P_i^{\mu}\mathcal{D}_{\mu}, P_i^{\nu}\mathcal{D}_{\nu}]\,\Psi = 0$$

This is obtained if

$$[P_i^{\mu} \frac{\partial}{\partial q^{\mu}}, P_j^{\nu} \frac{\partial}{\partial q^{\nu}}] = C_{ij}^k P_k^{\alpha} \frac{\partial}{\partial q^{\alpha}}, \qquad \Omega_{\mu\nu} P_i^{\mu} P_j^{\nu} = 0$$

- The true wave functions do not depend on half the number of phase space coordinates, so one cannot integrate using $d\sigma(M)$
- What should be the inner product on the true wave functions?
- Generally difficult, no natural volume measure on restricted subspace of phase space.
- lacktriangle One case where this is possible: M is a Kähler space, Ω is proportional to the Kähler form.
- For a Kähler space,

$$\Omega = \Omega_{a\bar{a}} dx^a \wedge d\bar{x}^{\bar{a}} = \frac{i}{2} \partial_a \partial_{\bar{a}} K dx^a \wedge d\bar{x}^{\bar{a}} = d\mathcal{A}$$
 $\mathcal{A}_a = -\frac{i}{2} \partial_a K, \qquad \mathcal{A}_{\bar{a}} = \frac{i}{2} \partial_{\bar{a}} K$
Metric $g_{a\bar{a}} = \partial_a \partial_{\bar{a}} K$

• Since $\Omega_{ab} = 0$, choose the (holomorphic or Bargmann) polarization condition

$$\mathcal{D}_{\bar{a}}\Psi = \left(\partial_{\bar{a}} + \frac{1}{2}\partial_{\bar{a}}K\right)\Psi = 0$$

$$\Psi = \exp(-\frac{1}{2}K)F$$

F is holomorphic, with $\partial_{\bar{a}}F = 0$.

• The inner product is

$$\langle 1|2\rangle = \int d\sigma(M) \, e^{-K} \, F_1^* F_2$$

• Operator = Pre-quantum operator subject to polarization if it preserves polarization; otherwise construct matrix element directly.

TOPOLOGICAL FEATURES: $\mathcal{H}^1(M,\mathbb{R})$

• Consider A and A + A which lead to same Ω ,

$$dA = \Omega, \quad d(A + A) = \Omega \implies dA = 0$$

- $A = d\Lambda \Longrightarrow$ remove it by canonical (unitary) transformation, $\Psi \Longrightarrow e^{i\Lambda}\Psi$.
- We can have dA = 0 with $A \neq d\Lambda$; this means $\mathcal{H}^1(M, \mathbb{R}) \neq 0$.
- We can try $\Psi = \exp\left(i\int_0^q A\right)\Phi$.

- The path-dependence of the phase factor:
 - $\int_C A \int_{C'} A = \oint A = \int_S dA = 0$
 - If the path C C' is noncontractible with no surface S whose boundary is C C', then $\oint A$ can be nonzero.

TOPOLOGICAL FEATURES: $\mathcal{H}^1(M,\mathbb{R})$

- Using $\Psi = \exp\left(i\int_0^q A\right) \Phi$ eliminates A but Φ need not be single-valued.
- Let $A = \theta \alpha$ where θ is a constant and $\int \alpha = 1$ for a single traversal of the basic noncontractible path corresponding to C C' (once around the red dot).
- Then for *n* traversals of the path, $\oint A = \theta n$.
- We can eliminate A and use Φ ; but Φ is not single-valued and changes by $\exp(i\theta n)$ going around the noncontractible path n times.
- We have an extra constant θ required to define the quantum theory.
- Examples:
 - Fractional statistics in two spatial dimensions
 - Theta vacua in quantum chromodynamics

Topological features: $\mathcal{H}^2(M,\mathbb{R})$

- This occurs when we have closed 2-forms which are not exact; i.e., $d\Omega = 0$, but $\Omega \neq dA$ for any globally defined A.
- Correspondingly, there are two-surfaces which are closed but are not boundaries of any 3-volumes
- If $\Omega = dA$, with A well-defined globally, for a closed surface Σ ,

$$\int_{\Sigma}\Omega=\int_{\partial\Sigma}\mathcal{A}=0$$

• If $\Omega \neq dA$, the integral of Ω over a closed noncontractible 2-surface can be nonzero.

$$I(\Sigma) = \int_{\Sigma} \Omega$$

$$I(\Sigma) - I(\Sigma') = \int_{\Sigma - \Sigma'} \Omega = \int_{V} d\Omega = 0$$

- The integral of Ω over any closed two-surface is a topological invariant, invariant under small deformations of the surface.
- If Σ is contractible, deform Σ to zero $\Longrightarrow \int_{\Sigma} \Omega = 0$.
- Otherwise, $I(\Sigma)$ can be nonzero.

- Example of Σ as a two-sphere:
 - Cover the surface with two patches, a northern hemisphere and a southern hemisphere, with $\Omega = dA_N$ and $\Omega = dA_S$ on corresponding patches
 - On the overlap region, the equator *E*,

$$\begin{array}{rcl} \mathcal{A}_{N} & = & \mathcal{A}_{S} + d\Lambda & & & & & \\ \Psi_{N} & = & \exp(i\Lambda) \, \Psi_{S} & & & & & \\ \Delta\Lambda & = & \oint_{E} d\Lambda & = & \int_{E} \mathcal{A}_{N} - \mathcal{A}_{S} & = & \int_{\partial N} \mathcal{A}_{N} \, + \, \int_{\partial S} \mathcal{A}_{S} & = & \int_{N} \Omega \, + \, \int_{S} \Omega \, = \, \int_{\Sigma} \Omega \end{array}$$

• Λ is not single-valued on the equator; but Ψ must be. Thus $\exp(i\Delta\Lambda) = 1$, or

$$\int_{\Sigma}\Omega=2\pi n,$$
 (Dirac; Generalized Bohr-Sommerfeld condition)

- Examples of this are:
 - Charged particle in a magnetic monopole background
 - Chern-Simons and WZW theories

We will consider quantization with the holomorphic polarization.

- A phase space which is also Kähler; the symplectic two-form must be a multiple of the Kähler form.
- The polarization condition is chosen as $\mathcal{D}_{\bar{a}} \Psi = 0$.
- The inner product of the prequantum Hilbert space = Square integrability on the phase space ⇒ Inner product on the true Hilbert space in the holomorphic polarization.
- f(q) which preserves the polarization \Rightarrow Prequantum operator $\mathcal{P}(f)$ restricted to the true (polarized) wave functions.
- For observables which do not preserve the polarization, one has to construct infinitesimal unitary transformations whose classical limits are the required canonical transformations.
- If the phase space M has noncontractible two-surfaces, then the integral of Ω over any of these surfaces must be quantized in units of 2π .
- If $\mathcal{H}^1(M, \mathbb{R})$ is not zero, then there are inequivalent \mathcal{A} 's for the same Ω and we need extra angular parameters to specify the quantum theory completely.

QUANTIZING THE TWO-SPHERE

- Take the phase space as the two-sphere $S^2 \sim \mathbb{CP}^1 \sim SU(2)/U(1)$.
- This is a Kähler manifold; basic parameters are:

$$\begin{array}{ll} \text{Coordinates} & z=x+iy, \quad \bar{z}=x-iy \\ \text{K\"ahler two-form} & \omega=i\,dz\wedge d\bar{z}/(1+z\bar{z})^2 \\ \text{Metric} & ds^2=dz\,d\bar{z}/(1+z\bar{z})^2 \\ \text{Riemannian curvature} & R_{1\,\,2}=4\,dx\wedge dy/(1+z\bar{z})^2 \\ \text{Euler number} & \chi=\int (R_{12}/2\pi)=2 \end{array}$$

- S^2 has nontrivial $\mathcal{H}^2(S^2,\mathbb{R})$ given by ω .
- The symplectic two-form is taken as

$$\Omega = n \,\omega = i \,n \,\frac{dz \wedge d\bar{z}}{(1 + z\bar{z})^2}$$

where n is an integer, in agreement with Dirac-Bohr-Sommerfeld condition.

The symplectic potential is

$$\mathcal{A} = \frac{in}{2} \left[\frac{z \, d\bar{z} - \bar{z} \, dz}{(1 + z\bar{z})} \right] = \frac{i}{2} \partial_{\bar{z}} K \, d\bar{z} - \frac{i}{2} \partial_{z} K \, dz$$
$$K = n \log(1 + z\bar{z})$$

Choose the polarization condition as

$$(\partial_{\bar{z}} - i\mathcal{A}_{\bar{z}}) \Psi = \left[\partial_{\bar{z}} + \frac{n}{2} \frac{z}{1 + z\bar{z}} \right] \Psi = 0$$

This has the solution

$$\Psi = \exp\left(-\frac{n}{2}\log(1+z\bar{z})\right)f(z)$$

with the inner product

$$\langle 1|2\rangle = i(n+1) \int \frac{dz \wedge d\bar{z}}{2\pi (1+z\bar{z})^{n+2}} f_1^* f_2$$

• Normalizable states correspond to linear combinations of $f(z) = 1, z, z^2, \dots, z^n$; dimension of Hilbert space = n + 1. (Inner product normalized so that $\text{Tr}(\mathbf{1}) = n + 1$.)

There are three independent vector fields on S^2 which preserve the metric and ω (Hamiltonian vector fields).

Vector field

Function on phase space $\xi_{+} = i \left(\frac{\partial}{\partial \bar{z}} + z^2 \frac{\partial}{\partial z} \right)$ $J_{+}=-n\frac{z}{1+z\overline{z}}$ $\xi_{-} = i \left(\frac{\partial}{\partial z} + \bar{z}^2 \frac{\partial}{\partial \bar{z}} \right)$ $J_{-}=-n\frac{\bar{z}}{1+c\bar{z}}$ $\xi_3 = i \left(z \frac{\partial}{\partial z} - \bar{z} \frac{\partial}{\partial \bar{z}} \right)$ $J_3 = -\frac{n}{2} \left(\frac{1 - z\bar{z}}{1 + z\bar{z}} \right)$

Check one case:

$$\begin{array}{rcl} i_{\xi_+}\Omega & = & i(\partial_{\overline{z}}+z^2\partial_z) \mathrel{\int} in\frac{dz\wedge d\overline{z}}{(1+z\overline{z})^2} \\ & = & -n\left[-\frac{dz}{(1+z\overline{z})^2}+\frac{z^2d\overline{z}}{(1+z\overline{z})^2}\right] \\ & = & -d\left[-\frac{nz}{(1+z\overline{z})}\right] \end{array}$$

The pre-quantum operators are

$$\mathcal{P}(J_{+}) = \left(z^{2}\partial_{z} - \frac{nz}{2}\frac{2 + z\bar{z}}{1 + z\bar{z}}\right) - i\xi_{+}^{\bar{z}}\mathcal{D}_{\bar{z}}$$

$$\mathcal{P}(J_{-}) = \left(-\partial_{z} - \frac{n}{2}\frac{\bar{z}}{1 + z\bar{z}}\right) - i\xi_{-}^{\bar{z}}\mathcal{D}_{\bar{z}}$$

$$\mathcal{P}(J_{3}) = \left(z\partial_{z} - \frac{n}{2}\frac{1}{1 + z\bar{z}}\right) - i\xi_{3}^{\bar{z}}\mathcal{D}_{\bar{z}}$$

On the polarized wave functions, $\mathcal{D}_{\bar{z}}\Psi = 0$, giving the quantum operators acting on f(z),

$$\hat{J}_{+} = z^{2}\partial_{z} - nz$$

$$\hat{J}_{-} = -\partial_{z}$$

$$\hat{J}_{3} = z\partial_{z} - \frac{1}{2}n$$

- These obey SU(2) algebra.
- The full Hilbert space corresponds to one UIR of SU(2) with j = n/2.

The form of the action is

$$S = \int dt \, \mathcal{A}_{\mu} \frac{dq^{\mu}}{dt} = i \frac{n}{2} \int dt \, \frac{z \dot{\bar{z}} - \bar{z} \dot{z}}{1 + z \bar{z}}$$
$$= i \frac{n}{2} \int dt \, \operatorname{Tr}(\sigma_3 g^{-1} \dot{g})$$

 $g \in SU(2)$; explicitly

$$g = \frac{1}{\sqrt{1+z\overline{z}}} \begin{bmatrix} 1 & z \\ -\overline{z} & 1 \end{bmatrix} \begin{bmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{bmatrix}$$

More generally, one can take, for g ∈ G,

$$S = i \sum_{a} w_{a} \int dt \operatorname{Tr}(\underline{t}^{a} g^{-1} \dot{g}), \qquad \mathcal{A}(g) = i \sum_{a} w_{a} \operatorname{Tr}(\underline{t}^{a} g^{-1} dg)$$
Weights of a UIR Diagonal Generators

- Ω is a two-form on G/H, H = maximal subgroup of G commuting with $\sum_a w_a t^a$.
- Consistent quantization ($\int \Omega = 2\pi n$) requires that $\{w_s\}$ must be the highest weights for a unitary irreducible representation (UIR) of G.
- Upon quantization, this action gives exactly one unitary irreducible representation (UIR) of G, namely the one corresponding to the highest weight state (w_1, w_2, \cdots) .

The action is given by

$$S = -\frac{k}{4\pi} \int_{\Sigma \times [t_i, t_f]} \text{Tr} \left[A \wedge dA + \frac{2}{3} A \wedge A \wedge A \right]$$
$$= -\frac{k}{4\pi} \int_{\Sigma \times [t_i, t_f]} d^3x \, \epsilon^{\mu\nu\alpha} \, \text{Tr} \left[A_\mu \partial_\nu A_\alpha + \frac{2}{3} A_\mu A_\nu A_\alpha \right]$$

 Σ is usually taken as a Riemann surface.

• Choose $A_0 = 0$ as a gauge condition; then

$$S = -\frac{ik}{\pi} \int dt d\mu_{\Sigma} \operatorname{Tr}(A_{\bar{z}} \partial_{0} A_{z}) \qquad \Longrightarrow \qquad \mathcal{A} = -\frac{ik}{\pi} \int_{\Sigma} \operatorname{Tr}(A_{\bar{z}} \delta A_{z}) + \delta \rho[A]$$

The symplectic two-form is

$$\Omega = -\frac{ik}{\pi} \, \int_{\Sigma} d\mu_{\Sigma} \, {\rm Tr} \big(\delta A_{\tilde{z}} \delta A_z \big) = \frac{ik}{2\pi} \int_{\Sigma} d\mu_{\Sigma} \, \delta A_z^a \delta A_z^a$$

• The space of 2-d gauge potentials is Kähler with the Kähler potential

$$K = \frac{k}{2\pi} \int_{\Sigma} A_{\bar{z}}^a A_z^a$$

(Time-independent) gauge transformations act on the potentials as

$$A^g = gAg^{-1} - dgg^{-1} \approx A - D\theta$$
 infinitesimally

The infinitesimal transformations are generated by the vector field

$$\xi = -\int_{\Sigma} \left((D_z \theta)^a \frac{\delta}{\delta A_z^a} + (D_{\bar{z}} \theta)^a \frac{\delta}{\delta A_{\bar{z}}^a} \right)$$

Acting on Ω we get

$$\begin{split} i_{\xi}\Omega &= -\int \left((D_z\theta)^a \frac{\delta}{\delta A_z^a} + (D_{\bar{z}}\theta)^a \frac{\delta}{\delta A_{\bar{z}}^a} \right) \rfloor \frac{ik}{2\pi} \int_{\Sigma} d\mu_{\Sigma} \, \delta A_{\bar{z}}^a \delta A_z^a \\ &= -\frac{ik}{2\pi} \int \left[((\bar{D}\theta)^a \delta A_z^a - (D\theta)^a \delta A_{\bar{z}}^a \right] = \frac{ik}{2\pi} \int \theta^a (\bar{D}\delta A_z - D\delta A_{\bar{z}})^a \\ &= \frac{ik}{2\pi} \int \theta^a \delta F_{\bar{z}z}^a = -\delta \left[\int \theta^a \frac{ik}{2\pi} F_{z\bar{z}}^a \right] \end{split}$$

The generator of gauge transformations is

$$G^a = \frac{ik}{2\pi} F^a_{z\bar{z}}$$

This has to vanish on wave functions, $G^a \Psi = 0$.

The prequantum wave functions have the inner product

$$(1|2) = \int d\mu(A_z, A_{\bar{z}}) \, \Psi_1^*[A_z, A_{\bar{z}}] \, \Psi_2[A_z, A_{\bar{z}}]$$

The symplectic potential is

$$\mathcal{A} = -\frac{ik}{2\pi} \int_{\Sigma} \operatorname{Tr} \left(A_{\bar{z}} \delta A_z - A_z \delta A_{\bar{z}} \right) = \frac{ik}{4\pi} \int_{\Sigma} \left(A_{\bar{z}}^a \delta A_z^a - A_z^a \delta A_{\bar{z}}^a \right)$$

lacktriangle The covariant derivatives with $\mathcal A$ as the potential are

$$abla = rac{\delta}{\delta A_z^a} + rac{k}{4\pi} A_{\overline{z}}^a, \qquad \overline{\nabla} = rac{\delta}{\delta A_{\overline{z}}^a} - rac{k}{4\pi} A_z^a$$

• The Bargmann polarization condition is $\nabla \Psi = 0$, with the solution

$$\Psi = \exp\left(-\frac{k}{4\pi}\int A_{\bar{z}}^{a}A_{z}^{a}\right) \psi[A_{\bar{z}}^{a}] = e^{-\frac{1}{2}K} \psi[A_{\bar{z}}^{a}]$$

 ψ 's are antiholomorphic, depend only on $A_{\bar{z}}$'s.

The inner product is now

$$\langle 1|2\rangle = \int [dA_{\bar{z}}^a dA_z^a] e^{-K(A_{\bar{z}}^a, A_z^a)} \psi_1^* \psi_2$$

• On the (anti)holomorphic part ψ of the wave functionals

$$A_z^a \ \psi[A_{\overline{z}}^a] = rac{2\pi}{k} rac{\delta}{\delta A_{\overline{z}}^a} \ \psi[A_{\overline{z}}^a]$$

• The condition of $G^a \Psi = 0$ thus becomes

$$\left(D_{\bar{z}} \; \frac{\delta}{\delta A^a_{\bar{z}}} \; - \; \frac{k}{2\pi} \partial_z A^a_{\bar{z}} \right) \; \psi[A^a_{\bar{z}}] \; = 0.$$

• Before solving this, we consider quantization of *k*.

 Construct a noncontracible two-surface in the configuration space. Start with the loop of gauge transformations

$$C = g(x, \lambda),$$
 $0 \le \lambda \le 1,$ $g(x, 0) = g(x, 1) = 1$

We then define

$$A(x, \lambda, \sigma) = (gAg^{-1} - dgg^{-1}) \sigma + (1 - \sigma)A$$

where $0 \le \sigma \le 1$.

This goes to *A* at $\lambda = 0$, 1 and at $\sigma = 0$. Further, $A \longrightarrow A^g$ at $\sigma = 1$. Thus this is a closed two-surface in $\mathfrak{C} = \mathfrak{F}/\mathfrak{G}_*$.

• For simplicity, take the starting point as A = 0 to get

$$A(x,\lambda,\sigma) = - dg g^{-1} \sigma$$

$$\delta A(x,\lambda,\sigma) = g d(g^{-1}\delta g) g^{-1} \sigma + dg g^{-1} d\sigma$$

• The integral of Ω over this surface is

$$\begin{split} \int \Omega &= \frac{k}{4\pi} \int \text{Tr}(\delta A \wedge \delta A) \\ &= \frac{k}{4\pi} 2 \int \text{Tr} \left[d(g^{-1} \delta g) g^{-1} dg \right] \int \sigma d\sigma \\ &= -2\pi \, k \, Q[g] \\ Q[g] &= \frac{1}{24\pi^2} \int \text{Tr}(dg g^{-1})^3 \end{split}$$

Q[g] =Winding number of the map $g: S^3 \to G \in \mathbb{Z}$

Dirac condition \implies *k* must be an integer.

THE WESS-ZUMINO-WITTEN THEORY

ullet This is defined by an action functional in 2 Euclidean (or 1+1) dimensions,

$$S_{WZW} = \frac{1}{8\pi} \int_{\mathcal{M}^2} d^2x \sqrt{g} g^{ab} \operatorname{Tr}(\partial_a M \, \partial_b M^{-1}) + \Gamma[M]$$

$$\Gamma[M] = \frac{i}{12\pi} \int_{\mathcal{M}^3} d^3x \, \epsilon^{\mu\nu\alpha} \operatorname{Tr}(M^{-1}\partial_\mu M \, M^{-1}\partial_\nu M \, M^{-1}\partial_\alpha M) = \frac{i}{12\pi} \int_{\mathcal{M}^3} \operatorname{Tr}(M^{-1}dM)^3$$

 $M(x) \in GL(N, \mathbb{C})$ (or suitable subgroups)

- $\Gamma[M]$ = Wess-Zumino term, defined by integration over \mathcal{M}^3 with $\partial \mathcal{M}^3 = \mathcal{M}^2$.
- Many \mathcal{M}^3 's with the same boundary \mathcal{M}^2 possible \equiv Different ways to extend M(x) to \mathcal{M}^3 .
- If M and M' are two different extensions of the same field, then M' = MN, with N = 1 on \mathcal{M}^2 ,

$$\Gamma[MN] = \Gamma[M] + \Gamma[N] - \frac{i}{4\pi} \int_{\mathcal{M}^2} d^2x \, \epsilon^{ab} \text{Tr} \underbrace{(\mathcal{M}^{-1} \partial_a \mathcal{M} \, \partial_b N N^{-1})}_{= 0}$$

N=1 on $\partial \mathcal{M}^3 \Longrightarrow N$ is (equivalent to) a map $N:\ S^3 \to G$, classified by $\Pi_3(G)$ (or Q[N]).

- Independence of the extension follows from:
 - 1. $\Gamma[N] = 0$ for $N \approx 1$ (to linear order in ∂NN^{-1}). By successive transformations, $\Gamma[M]$ is independent of the extension to \mathcal{M}^3 for all N connected to identity.
 - 2. If N is homotopically nontrivial, $\Gamma[N] = 2\pi i \ Q[N]$ (exp $(-k \ \Gamma[M])$) is independent of the extension, if $k \in \mathbb{Z}$. So $S = k \ S_{WZW}$ can be used as the action for a theory, the WZW theory with level number k.)
- In complex coordinates

$$\mathcal{S}_{WZW} = \frac{1}{2\pi} \int_{\mathcal{M}^2} \text{Tr}(\partial_z M \, \partial_{\bar{z}} M^{-1}) + \Gamma[M]$$

$$\mathcal{S}_{WZW}[M \, h] = \mathcal{S}_{WZW}[M] + \mathcal{S}_{WZW}[h] - \frac{1}{\pi} \int_{\mathcal{M}^2} \text{Tr}(M^{-1} \partial_{\bar{z}} M \, \partial_z h \, h^{-1})$$
 (Polyakov-Wiegmann identity)

• Chiral splitting: Antiholomorphic derivative of *M*, holomorphic derivative of *h*

THE WESS-ZUMINO-WITTEN THEORY (cont'd.)

• Another important property $M \longrightarrow M + \delta M = (1 + \theta)M$, $\theta = \delta M M^{-1}$ infinitesimal.

$$\begin{split} \delta \mathcal{S}_{WZW} &= -\frac{1}{\pi} \int \text{Tr} \left(\partial_{\bar{z}} (\delta M M^{-1}) \partial_{z} M M^{-1} \right) \\ &= -\frac{1}{\pi} \int \text{Tr} (\delta M M^{-1} \partial_{\bar{z}} A_{z}) \\ &= -\frac{1}{\pi} \int \text{Tr} (\delta M M^{-1} D_{z} \bar{C}) \\ &= -\frac{1}{\pi} \int \text{Tr} (\bar{C} \delta A_{z}) = \frac{1}{2\pi} \bar{C}^{a} \delta A_{z}^{a} \end{split}$$

$$A_z = -\partial_z M M^{-1}, \quad \bar{C} = -\partial_{\bar{z}} M M^{-1}$$

$$D_z\bar{C}=\partial_z\bar{C}+[A_z,\bar{C}]$$

• A_z and \bar{C} obey the equation

$$\partial_{\bar{z}}A_z - \partial_z \bar{C} + [\bar{C}, A_z] = 0, \qquad D_z \left[\frac{\delta S_{WZW}}{\delta A_z} \right] = \frac{1}{2\pi} \partial_{\bar{z}}A_z$$

This will be useful for evaluating Dirac determinants.

THE WESS-ZUMINO-WITTEN THEORY (cont'd.)

• If we use M^{\dagger} , we get C rather than \bar{C} .

$$D_z \frac{\delta S_{WZW}}{\delta A_{\bar{z}}^a} = \frac{1}{2\pi} \partial_z A_{\bar{z}}$$

Comparing with wave function for CS theory,

$$\psi[\bar{A}] = \exp\left[k\,\mathcal{S}_{WZW}(M^{\dagger})\right]$$

provided we can parametrize a general 2-dimensional gauge field as $A_z = -\partial_z M M^{-1}$.

A parametrization for gauge potentials

$$A_z = -\partial_z M M^{-1} \qquad A_{\bar{z}} = M^{\dagger - 1} \partial_{\bar{z}} M^{\dagger}$$

M is a complex matrix. (det M = 1 if gauge group is SU(N).)

- For U(1), use elementary result $A_i = \partial_i \theta + \epsilon_{ij} \partial_j \phi$. $\Longrightarrow M = \exp(\phi + i \theta)$.
- One can invert ∂_z via

$$\left(\frac{1}{\partial_z}\right)_{xx'} = \frac{1}{\pi(\bar{z} - \bar{z}')}$$

• Write $\partial_z M = -A_z M$,

$$M(x) = 1 - \int_{x'} \left(\frac{1}{\partial_z}\right)_{xx'} A_z(x') M(x')$$

= 1 - \int \int (\partial_z)^{-1} A_z + \int (\partial_z)^{-1} A_z(\partial_z)^{-1} A_z + \cdots

• The real advantage is that gauge transformations are homogeneous in terms of M,

$$A \to A^g = gAg^{-1} - dg g^{-1} \implies M^g = gM$$

THE WESS-ZUMINO-WITTEN THEORY (cont'd.)

- Comment: Space not simply connected $\Longrightarrow \exists$ zero modes for $\partial_z \implies \exists$ flat potentials a, not gauge equivalent to zero.
- Example: Torus $S^1 \times S^1$. Real coordinates $\xi_1, \ \xi_2, 0 \le \xi_i \le 1$, with $\xi_1 = 0 \sim \xi_1 = 1$, same for ξ_2 .

 $z = \xi_1 + \tau \xi_2$, $\tau = \text{modular parameter}$

For the torus, the generalized parametrization is

$$A_z = M \left[\frac{i\pi a}{\operatorname{Im} \tau} \right] M^{-1} - \partial_z M M^{-1}$$

lacktriangled Ambiguity: M and $MV(\bar{z}) \Longrightarrow \operatorname{same} A_z$. (Must ensure this does not affect physical results)

Analyze topology and geometry of the space of gauge fields in a Hamiltonian description

- Choose $A_0 = 0$ gauge; we are then left with the spatial components $A_i(x)$ which are Lie-algebra-valued vector fields on space.
- A gauge transformation acts on A_i as $A_i \to A_i^g = g^{-1}A_ig + g^{-1}\partial_ig$, $g \in G$.
- Define

$$\begin{split} \tilde{\mathfrak{F}} & \equiv & \{ \text{Set of all gauge potentials } A_i \} \\ & \equiv & \{ \text{Set of all Lie} - \text{algebra} - \text{valued vector fields on space } \mathbb{R}^d \} \\ \mathfrak{G} & \equiv & \{ \text{Set of all } g(\vec{x}) : \mathbb{R}^d \to G, \text{ such that } g(\vec{x}) \longrightarrow \text{constant } \in G \text{ as } |\vec{x}| \longrightarrow \infty \} \\ \mathfrak{G}_* & \equiv & \{ \text{Set of all } g(\vec{x}) : \mathbb{R}^d \to G, \text{ such that } g(\vec{x}) \longrightarrow 1 \text{ as } |\vec{x}| \longrightarrow \infty \} \end{split}$$

- Evidently $\mathfrak{G}/\mathfrak{G}_* = G$. This acts as a Noether symmetry classifying charged states in the theory.
- \mathfrak{G}_* is the true gauge symmetry, with A_i and A_i^g physically equivalent for $g(x) \in \mathfrak{G}_*$.

θ -vacua in 3+1 Dimensions (cont'd.)

- \bullet The physical configuration space is $\mathfrak{C} = \tilde{\mathfrak{F}}/\mathfrak{G}_*$
- Consider 2 + 1 dimensions

$$\Pi_2(\mathfrak{C}) = \Pi_1(\mathfrak{G}_*) = \Pi_3(G) = \begin{cases} \mathbb{Z} & \text{All compact } G \neq SO(4) \\ \mathbb{Z} \times \mathbb{Z} & G = SO(4) \end{cases}$$

- How does this arise?
 - An element of \mathfrak{G}_* is $g(\vec{x})$ with $g \to 1$ at spatial infinity $\Rightarrow \Pi_0(\mathfrak{G}_*) = \Pi_2(G) = 0$.
 - For connectivity, examine closed paths starting and ending at $g(\vec{x}) = 1$. Such a path is given by $g(\vec{x}, \lambda)$; $0 \le \lambda \le 1$ parametrizes path, with $g(\vec{x}, 0) = g(\vec{x}, 1) = 1$.
 - $g(\vec{x}, \lambda) : \mathbb{R}^3 \to G$ with $g \to 1$ at the 'boundary'. This is equivalent to a map from S^3 to G, classified by $\Pi_3(G)$.
- ullet There are noncontractible two-surfaces in ${\mathcal C}$ and hence in the phase space.

Gauge theories in 2+1 dimensions have $\mathcal{H}^2(M,\mathbb{R})\neq 0$; they can show Dirac quantization conditions (depending on choice of Ω)

● Consider 3 + 1 dimensions

$$\Pi_1(\mathfrak{C}) = \Pi_0(\mathfrak{G}_*) = \Pi_3(G) = \begin{cases} \mathbb{Z} & \text{All compact simple } G \neq SO(4) \\ \mathbb{Z} \times \mathbb{Z} & G = SO(4) \end{cases}$$

- How does this arise? Similar reasoning as for 2 + 1 dimensions
- There are noncontractible paths in C and hence in phase space.
- The phase space is multiply connected with connectivity given by \mathbb{Z} (or $\mathbb{Z} \times \mathbb{Z}$ for SO(4)).

Gauge theories in 3+1 dimensions have $\mathcal{H}^1(M,\mathbb{R})\neq 0$; the quantum theory will require additional vacuum angles (θ -vacua) to characterize it.

• Start with the Yang-Mills action and choose $A_0 = 0$,

$$S = \frac{1}{4} \int d^4x \, F^a_{\mu\nu} F^{a\mu\nu} = \frac{1}{2} \int d^4x \, (\partial_0 A^a_i) (\partial_0 A^a_i) + \cdots$$

$$E^a_i$$

• The symplectic potential is $A = \int d^3x \, E_i^a \, \delta A_i^a$ and

$$\Omega = \int d^3x \, \delta E^a_i \, \delta A^a_i = -2 \int d^3x \, \mathrm{Tr} \left(\delta E_i \, \delta A_i \right)$$

The condition of gauge invariance (under $g \approx 1 + \varphi$) is the Gauss law given by

$$G(\varphi)\Psi = \int d^3x \, \varphi^a (D_i E_i)^a \, \Psi = 0$$

• An element of \mathfrak{G}_* is a map $g(x): \mathbb{R}^3 \to G$ with the condition $g \to 1$ at spatial infinity. These are equivalent to maps $S^3 \to G$ and are characterized by the winding number Q[g].

$$\mathfrak{G}_* = \sum_{Q = -\infty}^{+\infty} \oplus \mathfrak{G}_{*Q}$$

This leads to $\Pi_1(\mathfrak{C}) = \mathbb{Z}$.

Construct a one-form on C which is closed but not exact.

$$K[A] = -\frac{1}{4\pi^2} \int \text{Tr}(F \wedge \delta A) = \frac{1}{16\pi^2} \int d^3x \, \epsilon^{ijk} \, F^a_{jk} \, \delta A^a_i$$

- Closure: $K[A] = \delta(S_{CS}/2\pi)$, so using $\delta^2 = 0$, $\delta K = 0$
- But K is not exact, even though $K = \delta(S_{CS}/2\pi)$, because S_{CS} is not gauge-invariant. It is not a function on C.
- K[A] is the generating element of $\mathcal{H}^1(\mathfrak{C}, \mathbb{R})$.
- An example of the noncontractible loop:

$$A_i(x,\tau) = (g A_i g^{-1} - \partial_i g g^{-1})\tau + A_i(x)(1-\tau), \qquad 0 \le \tau \le 1$$

This is an open path in \mathfrak{F} ; the end-points are gauge transforms of each other, so it is closed in \mathfrak{C} . If the path is contractible, it is deformable to

$$A_i(x,\tau) = A(x)^{g(x,\tau)},$$
 $g(x,0) = 1,$ $g(x,1) = g(x)$

 $g(x, \tau)$ makes g(x) homotopic to g = 1. This is not possible if $Q[g] \neq 0$.

θ -VACUA IN 3+1 DIMENSIONS (cont'd.)

Integrate K along such a curve,

$$\oint K[A] = \frac{1}{2\pi} \left(\mathcal{S}_{CS}[A^g] - \mathcal{S}_{CS}[A] \right)$$

$$= -\frac{1}{8\pi^2} \int \text{Tr}(F \wedge F) \qquad \text{(Instanton number)}$$

$$= -\frac{1}{32\pi^2} \int d^4x \, \text{Tr}(F_{\mu\nu}F_{\alpha\beta}) \epsilon^{\mu\nu\alpha\beta}$$

• Since $\delta K = 0$, we get the same Ω for \mathcal{A} and $\mathcal{A} + \theta K$.

$$\mathcal{A} = \int d^3x \, E_i^a \delta A_i^a + \theta \, K[A]$$

We need an additional parameter θ to characterize the quantum theory.

- $\oint K$ is an integer, so we can take $0 \le \theta \le 2\pi$.
- This is equivalent to using

$$S = S_{YM} + \theta \left[-\frac{1}{8\pi^2} \int \text{Tr}(F \wedge F) \right]$$

Fractional Quantum Hall effect & fractional statistics

• For the states with filling fractions $\nu = 1/(2p+1)$ where p is an integer, the N-electron wave function is the Laughlin function

$$\Psi_{\textit{Laughlin}} = \mathcal{N} \exp \left(-\frac{1}{2} \sum_{i=1}^{N} \bar{z}_i z_i \right) \prod_{1 \leq i < j \leq N} (z_i - z_j)^{2p+1}$$

where $z = x_1 + ix_2$.

This leads to an electric current of the form

$$\langle J_i \rangle = -\nu \frac{e^2}{2\pi} \epsilon_{ij} E_j, \qquad \nu = \frac{1}{2p+1}$$

This corresponds to the observed Hall conductivity, quantized as the reciprocals of odd integers.

 Among the excited states of the system as hole-like excitations with a wave function of the form

$$\Psi_{hole} = \prod_{i=1}^{N} (z_i - w) \Psi_{Laughlin} = \prod_{i=1}^{N} (z_i - w) \, \mathcal{N} \exp \left(-\frac{1}{2} \sum_{i=1}^{N} \bar{z}_i z_i \right) \prod_{1 \leq i < j \leq N} (z_i - z_j)^{2p+1}$$

45 / 84

where w is the position of the hole.

Fractional quantum Hall effect & fractional statistics (cont'd.)

We can consider statistics of holes using an effective action of the form

$$S = \int d^3x \left[\frac{k}{4\pi} \epsilon^{\mu\nu\alpha} a_{\mu} \partial_{\nu} a_{\alpha} + a_{\mu} \left(j^{\mu} - \frac{e}{2\pi} \epsilon^{\mu\nu\alpha} \partial_{\nu} A_{\alpha} \right) \right]$$

The electromagnetic current is

$$J^{\alpha} = -\frac{e}{2\pi} \epsilon^{\alpha\mu\nu} \partial_{\mu} a_{\nu}$$

where J^{μ} denotes electromagnetic current.

• The equation of motion for the auxiliary field a_{μ} is

$$\frac{k}{2\pi}\epsilon^{\mu\nu\alpha}\partial_{\nu}a_{\alpha} + j^{\mu} - \frac{e}{2\pi}\epsilon^{\mu\nu\alpha}\partial_{\nu}A_{\alpha} = 0$$

We then see that

$$J^{\mu} = \frac{e}{k} j^{\mu} - \frac{e^2}{2\pi k} \epsilon^{\mu\nu\alpha} \partial_{\nu} A^{\alpha} .$$

Choosing k = 2p + 1 we see that we can reproduce the Hall conductivity correctly in the absence of holes.

The first term then shows that the charge per hole is e/k.

• For a pair of well-separated holes we can take

$$j^{\mu} = \dot{w}_1^{\mu} \, \delta^{(2)}(x - w_1) + \dot{w}_2^{\mu} \, \delta^{(2)}(x - w_2)$$

Focusing just on the holes, the action becomes

$$S_{hole} = \frac{k}{4\pi} \int d^3x \, \epsilon^{\mu\nu\alpha} a_{\mu} \partial_{\nu} a_{\alpha} + \int dt \, \left(a_{\mu}(w_1) \dot{w_1}^{\mu} + a_{\mu}(w_2) \dot{w_2}^{\mu} + \frac{m \dot{w_1}^2}{2} + \frac{m \dot{w_2}^2}{2} \right)$$

• The time-component of the equation of motion for for a_{μ} is

$$\partial_z \alpha_{\overline{z}} - \partial_{\overline{z}} a_z = -i \frac{\pi}{k} \left(\delta^{(2)}(x - w_1) + \delta^{(2)}(x - w_2) \right)$$

with the solution

$$a_{\bar{z}} = -\frac{i}{2k} \left(\frac{1}{\bar{z} - \bar{w}_1} + \frac{1}{\bar{z} - \bar{w}_2} \right), \qquad a_z = \frac{i}{2k} \left(\frac{1}{z - w_1} + \frac{1}{z - w_2} \right)$$

The coincident point $w_1 = w_2$ has to be excluded for consistency. We also used

$$\partial_z \frac{1}{\bar{z} - \bar{w}} = \partial_{\bar{z}} \frac{1}{z - w} = \pi \, \delta^{(2)}(x - w)$$

Fractional quantum Hall effect & fractional statistics (cont'd.)

• We will also use the $a_0 = 0$ gauge so that the action for the holes simplifies to

$$S = \int dt \left[\frac{m}{2} (\dot{\bar{w}}_1 \dot{w}_1 + \dot{\bar{w}}_2 \dot{w}_2) + a_{w_1} \dot{w}_1 + a_{\bar{w}_1} \dot{\bar{w}}_1 + a_{w_2} \dot{w}_2 + a_{\bar{w}_2} \dot{\bar{w}}_2 \right]$$

where we have removed the singularities at the poles. Thus

$$a_{w_1} = \frac{i}{2k} \frac{1}{w_1 - w_2}, \qquad a_{\overline{w}_1} = -\frac{i}{2k} \frac{1}{\overline{w}_1 - \overline{w}_2}$$

$$a_{w_2} = \frac{i}{2k} \frac{1}{w_2 - w_1}, \qquad a_{\overline{w}_2} = -\frac{i}{2k} \frac{1}{\overline{w}_2 - \overline{w}_1}$$

- The coincident point $w_1 = w_2$ has been excluded, so the closed path of one hole going around the other is *not contractible*. $\Longrightarrow \Pi_1(\text{configuration space}) = \mathbb{Z} \neq 0$.
- With w₂ fixed,

$$d a = 0$$
 for $a = a_{w_1} dw_1 + a_{\bar{w}_1} d\bar{w}_1 = d \left[\frac{i}{2k} \log \left(\frac{w_1 - w_2}{\bar{w}_1 - \bar{w}_2} \right) \right]$

a is not exact since

$$\oint_C a = -\frac{2\pi}{k} \neq 0, \qquad C \text{ encloses } w_2$$

Fractional quantum Hall effect & fractional statistics (cont'd.)

• The Hamiltonian corresponding to the action for holes is

$$H = \frac{1}{2}m\left(\dot{\bar{w}}_1\dot{w}_1 + \dot{\bar{w}}_2\dot{w}_2\right)$$

• From the action we also identify the operators

$$\begin{split} m\dot{w}_1 &= -i\frac{\partial}{\partial\bar{w}_1} - a_{\bar{w}_1}, \qquad m\dot{\bar{w}}_1 &= -i\frac{\partial}{\partial w_1} - a_{w_1} \\ m\dot{w}_2 &= -i\frac{\partial}{\partial\bar{w}_2} - a_{\bar{w}_2}, \qquad m\dot{\bar{w}}_2 &= -i\frac{\partial}{\partial w_2} - a_{w_2} \end{split}$$

Write the wave function as

$$\Psi(x_1, x_2) = \exp\left[\frac{1}{2k}\log\left(\frac{\bar{w}_1 - \bar{w}_2}{w_1 - w_2}\right)\right] \Phi(x_1, x_2)$$

• The action of H on Φ is

$$H\Phi = -\frac{1}{2m} \left(\frac{\partial}{\partial w_1} \frac{\partial}{\partial \bar{w}_1} + \frac{\partial}{\partial w_2} \frac{\partial}{\partial \bar{w}_2} \right) \Phi$$

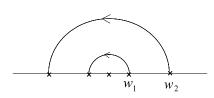
Fractional quantum Hall effect & fractional statistics (cont'd.)

• We can consider the exchange of the two holes as due to a rotation of the two points by π followed by a translation to bring them back to the same points. We take Φ to be symmetric under exchange. As for the phase factor the translation does not change it. The π -rotation leads to

$$\Psi(x_2, x_1) = e^{-i\pi/k} \, \Psi(x_1, x_2)$$

With k = 2p + 1, we see that the two holes do display fractional statistics.

Z



FLUID DYNAMICS

- Lagrange's approach
 - Newton's equations for N point-particles → coarse graining using a smooth density function → fluid dynamics
- Point particle ≡ a unitary irreducible representation (UIR) of the Poincaré group
- Classical action which upon quantization gives a UIR of a group = A co-adjoint orbit action

Can we construct fluid dynamics as $\text{Co-adjoint orbit action } \to \text{ coarse graining } \to \text{ fluid dynamics ?}$

- Advantages:
 - A single formalism where symmetries are foundational
 - ullet Gauge fields ullet Abelian and nonabelian Magnetohydrodynamics
 - Spin, magnetic moment effects
 - Gravity easily included (Mathisson-Papapetrou equation)
 - Anomalous symmetries (chiral magnetic effect, chiral vorticity effect, etc.)

THE RELATIVISTIC POINT-PARTICLE

- For relativistic point-particles, we must use this action with *G* = Poincaré group, the group of translations and Lorentz transformations
- We consider Poincaré group = contraction of de Sitter group; this makes some traces easier to define.
- For de Sitter algebra, use standard Dirac γ -matrices with

$$J_{\mu\nu} = \frac{1}{4i} [\gamma_{\mu}, \gamma_{\nu}], \qquad P_{\mu} = \frac{\gamma_{\mu}}{r_0}, \quad \text{Poincar\'e} = r_0 \to \infty \text{ limit}$$

These obey the commutation rules

$$\begin{split} [J_{\mu\nu},J_{\alpha\beta}] &= i \left(\eta_{\mu\alpha} J_{\nu\beta} - \eta_{\mu\beta} J_{\nu\alpha} - \eta_{\nu\alpha} J_{\mu\beta} + \eta_{\nu\beta} J_{\mu\alpha} \right) \\ [J_{\mu\nu},P_{\alpha}] &= i \left(\eta_{\mu\alpha} P_{\nu} - \eta_{\nu\alpha} P_{\mu} \right) \\ [P_{\mu},P_{\nu}] &= i \frac{4}{r_0^2} J_{\mu\nu} \end{split}$$

• As $r_0 \to \infty$ we get the Poincaré limit.

A general element is given by

$$g = \exp(i\gamma_{\alpha} x^{\alpha}/r_{0}) \Lambda, \qquad \Lambda = B(p) R$$

$$B(p) = \frac{1}{\sqrt{2m(p_{0} + m)}} \begin{bmatrix} p_{0} + m & \vec{\sigma} \cdot \vec{p} \\ \vec{\sigma} \cdot \vec{p} & p_{0} + m \end{bmatrix}$$

 Λ is an element of the Lorentz group, R is a pure spatial rotation generated by J_{12} , J_{23} , J_{31} , and $m = \sqrt{v^2}$.

• The action is given by

$$S = i \, m \, r_0^2 \int d\tau \, \text{Tr} \left(\frac{\gamma_0}{r_0} g^{-1} \, \frac{dg}{d\tau} \right) + i \, \frac{n}{2} \, \text{Tr} (J_{12} \, g^{-1} \, dg) \, - \, \mathcal{H}$$

Using $B\gamma_0B^{-1} = \gamma^{\alpha} p_{\alpha}/m$ and taking $r_0 \to \infty$, we find, for the Poincaré group,

$$S = -\int d\tau \, p_{\mu} \, \dot{x}^{\mu} + i \, \frac{n}{4} \int d\tau \, \text{Tr}(\Sigma_3 \, \Lambda^{-1} \, \dot{\Lambda}) \, - \, \mathcal{H}, \qquad \Sigma_3 = \begin{bmatrix} \sigma_3 & 0 \\ 0 & \sigma_3 \end{bmatrix}$$

- \mathcal{H} generates τ -evolution, so we should set it to zero as a constraint on quantum states. This leads to the wave equation.
- The addition of the term $e A_{\mu} \dot{x}^{\mu}$ leads to relativistic charged point-particle dynamics, with magnetic moment (g=2) and spin-orbit coupling.

• Consider the point-particle à la Wong again. Take a collection of particles indexed by λ .

$$S = -in \int dt \operatorname{Tr}(\sigma_3 g^{-1} \dot{g}) \quad \rightarrow \quad S = -i \int dt \sum_{\lambda} n_{\lambda} \operatorname{Tr}(\sigma_3 g_{\lambda}^{-1} \dot{g}_{\lambda})$$

- We can take the continuum limit by $\lambda \to \vec{x}$, $\sum_{\lambda} \to \int d^3x/v$, $n_{\lambda}/v \to \rho(x)$.
- This leads to

$$S = -i \int d^4x \, \rho \, \text{Tr}(\sigma_3 \, g^{-1} \dot{g})$$

where $g = g(\vec{x}, t)$.

This suggest the relativistic form

$$S = -i \int j^{\mu} \operatorname{Tr}(\sigma_3 g^{-1} \partial_{\mu} g)$$

The difficulty for Poincaré is about what replaces \dot{x}^{μ} . Only 3 of the 4 components are independent; further, role of diffeomorphisms versus translations in the Poincaré group is not clear.

THE LAGRANGIAN FOR ORDINARY FLUID DYNAMICS

Ordinary fluid dynamics can be described by a Poisson bracket system

$$\begin{aligned} & [\rho(x), \rho(y)] & = & 0 \\ & [v_i(x), \rho(y)] & = & \partial_{xi} \delta^{(3)}(x-y) \\ & [v_i(x), v_j(y)] & = & -\frac{\omega_{ij}}{\rho} \delta^{(3)}(x-y) \end{aligned}$$

$$\omega_{ij} = (\partial_i v_j - \partial_j v_i).$$

$$H = \int d^3x \left[\frac{1}{2} \rho v^2 + V(\rho) \right]$$

- We get the usual equations of fluid motion with pressure $p = \rho \frac{\partial V}{\partial \rho} V$.
- The PBs can be summarized as

$$[F,G] = \int \left[\frac{\delta F}{\delta \rho} \partial_i \left(\frac{\delta G}{\delta v_i} \right) - \frac{\delta G}{\delta \rho} \partial_i \left(\frac{\delta F}{\delta v_i} \right) - \frac{\omega_{ij}}{\rho} \frac{\delta F}{\delta v_i} \frac{\delta G}{\delta v_j} \right]$$

for any two functions *F*, *G*.

THE LAGRANGIAN FOR ORDINARY FLUID DYNAMICS (cont'd.)

• The helicity *C* is given by

$$C = rac{1}{8\pi} \int \epsilon^{ijk} \, v_i \, \partial_j v_k \, = \mathrm{CS} \ \mathrm{term} \ \mathrm{for} \ v_i$$

- The helicity Poisson-commutes with all local observables, [F, C] = 0 for all F
 ⇒ C is superselected.
- Usually if $[\xi^a, \xi^b] = K^{ab}$, the Lagrangian is of the form $\mathcal{A}_a \dot{\xi}^a$, $\delta \mathcal{A} = \frac{1}{2} K_{ab}^{-1} \delta \xi^a \wedge \delta \xi^b$. Here K is not invertible, $\delta C/\delta v_i$ is a zero mode.
- The solution is also clear: We must fix the value of *C* and seek a parametrization for the

This is the difficulty in writing down a Lagrangian.

- velocity which keeps the same value of *C*.
- Such a parametrization exists. It is the so-called Clebsch parametrization,

$$v_i = \partial_i \theta + \alpha \, \partial_i \beta$$

57 / 84

 θ , α , β are arbitrary functions.

THE LAGRANGIAN FOR ORDINARY FLUID DYNAMICS (cont'd.)

• For v_i parametrized in terms of well-defined θ , α , β ,

$$C = \int (\text{total derivative}) = 0$$

A suitable action which gives the PBs is now (C.C. LIN)

$$S = \int \rho \,\dot{\theta} + \rho \,\alpha \,\dot{\beta} - \int \left[\frac{1}{2}\rho \,v^2 + V\right]$$

We can also write this as

$$S = \int J^{\mu} \left(\partial_{\mu} \theta + \alpha \, \partial_{\mu} \beta \right) - \int \left[J^{0} \, - \, \frac{J^{i} J^{i}}{2 \, \rho} + V \right]$$

 $J^0 = \rho$; elimination of the auxiliary J^i leads to the previous version. $\int J^0$ is a constant.

• The relativistic generalization is

$$S = \int J^{\mu} \left(\partial_{\mu} \theta + \alpha \, \partial_{\mu} \beta \right) - \int F(n)$$

$$F(n) = n + V(n),$$
 $n^2 = J^2 = (J^0)^2 - J^i J^i.$

- The lesson from this is to treat
 - Translational part of action \rightarrow Clebsch parametrization
 - Rest of the action in terms of the co-adjoint orbit version
- The general action is thus

$$S = \int d^4x \left[j^{\mu} \left(\partial_{\mu} \theta + \alpha \partial_{\mu} \beta \right) - \frac{i}{4} j^{\mu}_{(s)} \operatorname{Tr}(\Sigma_3 \Lambda^{-1} \partial_{\mu} \Lambda) + i \sum_a j^{\mu}_{(a)} \operatorname{Tr}(q_a g^{-1} D_{\mu} g) \right.$$
$$\left. - F(\{n\}) \right] + S(A)$$

- Generally, we must have different currents j^{μ} , $j^{\mu}_{(s)}$, $j^{\mu}_{(a)}$ for mass flow, spin flow and the transport of other quantum numbers.
- Coupling to gauge fields follow from covariant derivatives on the group elements

GROUP-THEORETIC DESCRIPTION OF FLUIDS (cont'd.)

- $F(\{n\})$ depends on all invariant combinations of the currents and characterize the nature of the fluid, $n = \sqrt{j\mu j_{\mu}}$, $n_a = \sqrt{j\mu j_{(a)}} j_{\mu(a)}$, etc.
- The group-valued fields are related to flow velocities and currents and given by the equations of motion,

$$\begin{split} &\frac{1}{n}\frac{\partial F}{\partial n}\,j_{\mu} &=& \partial_{\mu}\theta + \alpha\,\partial_{\mu}\beta\\ &\frac{1}{n_{a}}\frac{\partial F}{\partial n_{a}}\,j_{\mu\,(a)} &=& i\,\mathrm{Tr}\,(q_{a}\,g^{-1}D_{\mu}\,g), \qquad \mathrm{etc.} \end{split}$$

Remark: The Clebsch parametrization can also be written in a "group" form,

$$-i\operatorname{Tr}(\sigma_3 g^{-1}dg) = d\theta + \alpha d\beta$$

where $g \in SU(1,1)$ (or SU(2)),

$$g = \frac{1}{\sqrt{1 - \bar{u}u}} \begin{pmatrix} 1 & u \\ \bar{u} & 1 \end{pmatrix} \begin{pmatrix} e^{i\theta/2} & 0 \\ 0 & e^{-i\theta/2} \end{pmatrix}, \quad \alpha = \frac{\bar{u}u}{(1 - \bar{u}u)}, \quad \beta = -\frac{i}{2}\log(u/\bar{u})$$

FURTHER COMMENTS

• In terms of the group-theoretic version, the helicity is given by the topological invariant

$$C = \text{constant } \int \text{Tr}(g^{-1} \, dg)^3$$

- Another motivation for the action as we formulate it is:
 - The full quantum dynamics for a state with density matrix ρ is given by the action

$$S = \int dt \operatorname{Tr} \left[\rho_0 \, \left(U^\dagger i \, \frac{\partial U}{\partial t} - U^\dagger \, H \, U \right) \right]$$

• The variational equation for this is

$$i\frac{\partial \rho}{\partial t} = H \rho - \rho H, \qquad \rho = U \rho_0 U^{\dagger}$$

• The canonical 1-form for this action is

$$\mathcal{A} = i \operatorname{Tr}(\rho_0 U^{\dagger} \delta U)$$

where δU includes all possible observables.

 Consider a subset of transformations (symmetry transformations which can survive into the hydrodynamic regime),

$$\delta U = -i \left(t_A U \right) \delta \theta^A + \underbrace{\text{other transformations}}_{\text{neglect}}$$

62 / 84

This corresponds to

$$\mathcal{A} = \text{Tr}(U \,\rho_0 \, U^\dagger \, t_A) \,\delta\theta^A = T_A \,\delta\theta^A, \qquad T_A(\theta) = \text{Tr} \,(\rho \, t_A) = \langle t_A \rangle$$

 T_A will have appropriate group composition/commutation properties.

• θ 's are essentially collective variables for the theory. The action (at the level of the θ 's) which gives this A is the co-adjoint orbit action

- Now a comment about the Clebsch variables:
 - Translational degrees of freedom x^{μ} can be used with the Poincaré group.
 - If we keep the \dot{x}^{μ} as fluid velocity, then we get the correct fluid equations, with no pressure.
 - To change to diffeomorphisms, look at the algebra

$$[M(\xi), M(\xi')] = M(\xi \times \xi'), \qquad (\xi \times \xi')^i = \xi^k \partial_k \xi'^i - \xi'^k \partial_k \xi^i$$

This can be realized by

$$J_i = \pi_1 \partial_i \varphi_1 + \pi_2 \partial_i \varphi_2 + \cdots$$

for any number of pairs (π_i, φ_i) .

- We need two pairs for a complete characterization in 3 spatial dimensions.
- Hence, we can argue

Diffeomorphism symmetry
$$\implies$$
 $SU(2)$ or $SU(1,1)$ symmetry for the pairs $(\pi_i, \varphi_i), \quad i=1,2$

- π_1, φ_1 could be viewed as modulus and phase of ψ , ψ^* . How do we interpret the extra fields?
- For vorticity, we need to compare the velocities of nearby particles. Inside each coarse-graining unit (around, say, \vec{x}), we must have distinct fields representing these particles.
- $\psi(x)$ and $\psi(x + \epsilon)$ must be counted as independent fields since we want to replace them by fields at \vec{x} upon coarse-graining.

- We will discuss 3 examples
 - SU(2) internal symmetry (Nonabelian Magnetohydrodynamics)
 - Magnetohydrodynamics including spin, magnetic moment and spin-orbit effects
 - Spin and coupling to gravity
- We will also discuss generalization to include anomalies
- We will also discuss applying the same formalism to braiding of vortices in a p-wave superconductor.

GENERAL ACTION FOR FLUIDS

The general action is thus

$$S = \int d^4x \left[j^{\mu} \left(\partial_{\mu} \theta + \alpha \partial_{\mu} \beta \right) - \frac{i}{4} j^{\mu}_{(s)} \operatorname{Tr}(\Sigma_3 \Lambda^{-1} \partial_{\mu} \Lambda) + i \sum_a j^{\mu}_{(a)} \operatorname{Tr}(q_a g^{-1} D_{\mu} g) \right.$$
$$\left. - F(\{n\}) \right] + S(A)$$

Structure of action

Transport	Current	Fields
Mass flow	j^{μ}	θ, α, β
Spin flow	$j^{\mu}_{(s)}$	Lorentz group parameters $\boldsymbol{\Lambda}$
Internal charge flow	$j^{\mu}_{(a)}$	Internal symmetry group element g

- Generally, we must have as many currents as the rank of the group, the corresponding densities are canonically conjugate to the diagonal angles.
- Any further relations among currents would "constitutive" relations, specific to the physical system.
- Coupling to gauge fields follow from covariant derivatives on the group elements

SU(2) Magnetohydrodynamics

Consider the action (BISTROVIC, JACKIW, LI, NAIR, PI)

$$S \quad = \quad \int J_m^\mu \, \left(\partial_\mu \theta + \alpha \, \partial_\mu \beta \right) - i \int j^\mu \, {\rm Tr} (\sigma_3 \, g^{-1} D_\mu g) - \int F(n) \, + \, S_{YM} \label{eq:Smatrix}$$

$$D_{\mu}g = \partial_{\mu}g + A_{\mu}g$$
 $A_{\mu} = -it^{a}A_{\mu}^{a}, \quad t^{a} = \frac{1}{2}\sigma^{a}$
 $J_{m}^{\mu} = n_{m}U^{\mu}, \qquad \qquad U^{2} = 1$
 $i^{\mu} = nu^{\mu}, \qquad \qquad u^{2} = 1$

We also include a background field which couples to the color charge.

SU(2) MAGNETOHYDRODYNAMICS (cont'd.)

• The current which couples to A^a_{μ} is given by

$$J^{a\mu} = \text{Tr}(\sigma_3 g^{-1} t^a g) j^{\mu} = Q^a j^{\mu}, \qquad Q^a = \text{Tr}(\sigma_3 g^{-1} t^a g)$$

This is the current for the nonabelian symmetry and has the Eckart form.

Some of the equations of motion are

$$\begin{array}{rcl} \partial_\mu j^\mu &=& 0\\ (D_\mu J^\mu)^a &=& 0\\ \\ n\,u^\mu\partial_\mu(u_\nu F')-n\,\partial_\nu F' &=& {\rm Tr}(J^\mu F_{\mu\nu}) \end{array} \qquad \qquad \hbox{("Euler equation")}$$

• The first two equations lead to the fluid generalization of the Wong equations

$$u^{\mu}(D_{\mu}Q)^{a} = (D_{0}Q)^{a} + \vec{u} \cdot (\vec{D}Q)^{a} = 0$$

SU(2) Magnetohydrodynamics (cont'd.)

We also have

$$\partial_{\mu}T^{\mu\nu} = \text{Tr}\left(J^{\mu}F_{\mu\nu}\right)$$

 $T^{\mu\nu}$ has the perfect fluid form.

• The nonabelian charge density $\rho = \rho^a t^a$ (which is the time-component of $J^{a\mu}$) transforms, under gauge transformations, as

$$\rho \to \rho' = h^{-1}\rho h, \qquad h \in SU(2)$$

• We can diagonalize ρ at each point by an (\vec{x}, t) -dependent transformation, $\rho_{diag} = \rho_0 \sigma_3$. Then $\rho = g \, \rho_{diag} \, g^{-1}$, or

$$\rho^{a} = \rho_{0} \operatorname{Tr}(g \, \sigma_{3} \, g^{-1} \, t^{a}) = j^{0} \operatorname{Tr}(g \, \sigma_{3} \, g^{-1} \, t^{a})$$

• g diagonalizes the charge density at each point. The eigenvalues are gauge-invariant and are represented by n. g describes the degrees of freedom corresponding to orientation in color space. Under a gauge transformation, $g \to h^{-1} g$.

SU(2) MAGNETOHYDRODYNAMICS (cont'd.)

- There are two (related) charge densities, j^0 and the nonabelian charge density $\rho^a = J^{a\,0}$.
- The basic (new) Poisson brackets are

- Remark: These equations of motion and charge algebra have some points of overlap with the work of GIBBONS, HOLM, KUPERSHMIDT
- A notable feature is (DAI, NAIR):

Since $\Pi_3[SU(N)] = \mathbb{Z}$, there are skyrmion-type (topological) solitons in any nonabelian magnetohydrodynamics

ABELIAN MAGNETOHYDRODYNAMICS WITH SPIN

- Consider a special case where mass transport and charge transport are described by the same flow velocity.
- This applies when we have one species of particles with the same charge.
- Further, for dilute systems, if we neglect the possibility of spin-singlets forming (and moving independently), we can take spin flow velocity ≈ charge flow velocity
- The action for this case is (KARABALI, NAIR)

$$S = S(A) + \int d^4x \left[j^{\mu} \left(\partial_{\mu} \theta + \alpha \partial_{\mu} \beta + e A_{\mu} \right) - \frac{i}{4} j^{\mu} \operatorname{Tr}(\Sigma_3 \Lambda^{-1} \partial_{\mu} \Lambda) - F(n, \sigma) \right]$$

 $\Lambda = BR$ contains the same velocity u^{μ} as in $j^{\mu} = n u^{\mu}$.

• *F* depends on *n* and $\sigma = S^{\mu\nu} F_{\mu\nu}$, where $S^{\mu\nu}$ is the spin density,

$$S^{\mu\nu} = \frac{1}{2} \operatorname{Tr} (\Sigma_3 \Lambda^{-1} J^{\mu\nu} \Lambda), \qquad J^{\mu\nu} = \frac{i}{4} [\gamma^\mu, \gamma^\nu]$$

ABELIAN MAGNETOHYDRODYNAMICS WITH SPIN (cont'd.

Having the same flow velocity leads to a requirement

$$\frac{2}{n}\,\frac{\partial F}{\partial n}\,\frac{\partial F}{\partial \sigma} = e$$

This is the fluid analog of the requirement of g = 2 for point-particles.

• The equations of motion are the Maxwell equations +

$$u^{\alpha}\partial_{\alpha}(F'u_{\nu}) - \partial_{\nu}F' = e u^{\lambda}F_{\lambda\nu} - \frac{16e}{F'} \partial_{\nu}S^{\lambda\beta}(SFS - FSS)_{\lambda\beta} + \cdots$$

$$u^{\alpha}\partial_{\alpha}S_{\mu\nu} = \frac{e}{F'} \left[S_{\mu}^{\lambda}F_{\lambda\nu} - S_{\nu}^{\lambda}F_{\lambda\mu} \right] + \frac{1}{F'} \left[S_{\mu}^{\lambda}f_{\lambda\nu} - S_{\nu}^{\lambda}f_{\lambda\mu} \right]$$

$$- \frac{16e}{F'^{2}} (u_{\mu}S_{\nu}^{\lambda} - u_{\nu}S_{\mu}^{\lambda})\partial_{\lambda}S^{\rho\beta}(SFS - FSS)_{\rho\beta} + \cdots$$

$$f_{\lambda\nu} = u_{\lambda}\partial_{\nu}F' - u_{\nu}\partial_{\lambda}F', \qquad F' = \frac{\partial F}{\partial n}$$

$$(SFS - FSS)_{\lambda\beta} = S_{\lambda}^{\rho}F_{\rho\tau}S_{\beta}^{\tau} - F_{\lambda}^{\rho}S_{\rho\tau}S_{\beta}^{\tau}$$

Spin density is subject to precession effects due to pressure gradient terms as well as due to the external field.

- First consider anomalous U(1) symmetry, the fluid dynamical equations due to Son & SUROWKA.
- By use of the Clebsch parametrization, we can write the action (ABANOV, MONTEIRO, NAIR)

$$S = \int d^4x \left[j^{\mu} (V_{\mu} + A_{\mu}) + \frac{c}{6} \epsilon^{\mu\nu\alpha\beta} \left(A_{\mu} V_{\nu} \partial_{\alpha} V_{\beta} + V_{\mu} A_{\nu} \partial_{\alpha} A_{\beta} \right) - \mu \sqrt{-j^2} + P(\mu) \right]$$

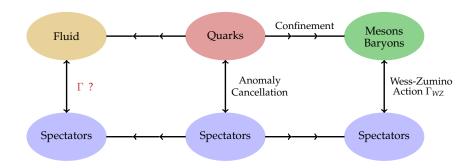
Here $V_{\mu} = \partial_{\mu}\theta + \alpha\partial_{\mu}\beta$.

This leads to the anomaly equations

$$\begin{split} T^{\mu}_{\ \nu} &= \mu \, n \, U^{\mu} \, U_{\nu} + \delta^{\mu}_{\ \nu} \, P \\ J^{\mu} &= n \, U^{\mu} + \epsilon^{\mu\nu\alpha\beta} \left[\frac{c}{6} \, \mu U_{\nu} \, \partial_{\alpha} (\mu \, U_{\beta}) + \frac{c}{2} \mu U_{\nu} \, \partial_{\alpha} A_{\beta} \right] \\ \partial_{\mu} T^{\mu}_{\ \nu} &= F_{\lambda\mu} J^{\mu}, \qquad \partial_{\mu} J^{\mu} = -\frac{c}{8} \epsilon^{\mu\nu\alpha\beta} F_{\mu\nu} F_{\alpha\beta} \\ (V + A)_{\mu} &= -\mu \, U_{\mu} \end{split}$$

INCORPORATING ANOMALIES (cont'd.)

 Now we turn to the standard model and the 't Hooft argument for the Wess-Zumino action for anomalies



• A similar argument for the fluid phase suggests an effective action for anomalies in terms of fluid variables. What is this action?

- Since we have formulated fluid dynamics using group variables, this is easy. We can use the same Γ_{WZ} but using fluid group element instead of meson fields.
- The suggestion is (NAIR, RAY, ROY)

$$S = -i \int \left[j_3^{\mu} \operatorname{Tr} \left(\frac{\lambda_3}{2} g_L^{-1} D_{\mu} g_L \right) + j_8^{\mu} \operatorname{Tr} \left(\frac{\lambda_8}{2} g_L^{-1} D_{\mu} g_L \right) + k_3^{\mu} \operatorname{Tr} \left(\frac{\lambda_3}{2} g_R^{-1} D_{\mu} g_R \right) \right]$$

$$+ k_8^{\mu} \operatorname{Tr} \left(\frac{\lambda_8}{2} g_R^{-1} D_{\mu} g_R \right) + j_0^{\mu} \operatorname{Tr} \left(g_L^{-1} D_{\mu} g_L \right) + k_0^{\mu} \operatorname{Tr} \left(g_R^{-1} D_{\mu} g_R \right)$$

$$- F(n_3, n_8, n_0, m_3, m_8, m_0) + S_{YM}(A) + \Gamma_{WZ}(A_L, A_R, g_L g_R^{\dagger})$$

- $\bullet \ \Gamma_{WZ}(A_L,A_R,g_L\,g_R^\dagger) \ \text{is the standard Wess-Zumino term} \ \Gamma_{WZ}(A_L,A_R,U) \ \text{with} \ {\color{blue}U} \Longrightarrow g_L\,g_R^\dagger.$
- There are other ways to incorporate anomalies (SON & SUROWKA; SADOFYEV & ISACHENKOV; ABANOV et al; WIEGMANN; + many others); an approach somewhat similar to ours is by SHU LIN.

● In full it is given by (WITTEN; KAYMAKCALAN, RAJEEV, SCHECHTER; + ...)

$$\begin{split} \Gamma_{WZ} &= -\frac{iN}{240\pi^2} \int_D \text{Tr}(dU \, U^{-1})^5 - \frac{iN}{48\pi^2} \int_{\mathcal{M}} \text{Tr}[(A_L \, dA_L + dA_L \, A_L + A_L^3) \, dU U^{-1}] \\ &- \frac{iN}{48\pi^2} \int_{\mathcal{M}} \text{Tr}[(A_R \, dA_R + dA_R \, A_R + A_R^3) \, U^{-1} dU] \\ &+ \frac{iN}{96\pi^2} \int_{\mathcal{M}} \text{Tr}[A_L \, dU U^{-1} A_L \, dU U^{-1} - A_R \, U^{-1} dU \, A_R \, U^{-1} dU] \\ &+ \frac{iN}{48\pi^2} \int_{\mathcal{M}} \text{Tr}[A_L (dU U^{-1})^3 + A_R (U^{-1} dU)^3 + dA_L \, dU \, A_R \, U^{-1} - dA_R \, d(U^{-1}) \, A_L \, U] \\ &+ \frac{iN}{48\pi^2} \int_{\mathcal{M}} \text{Tr}[A_R \, U^{-1} \, A_L \, U (U^{-1} dU)^2 - A_L \, U \, A_R \, U^{-1} (dU U^{-1})^2] \\ &- \frac{iN}{48\pi^2} \int_{\mathcal{M}} \text{Tr}[(dA_R \, A_R + A_R \, dA_R) \, U^{-1} \, A_L \, U - (dA_L \, A_L + A_L \, dA_L) \, U \, A_R \, U^{-1}] \\ &- \frac{iN}{48\pi^2} \int_{\mathcal{M}} \text{Tr}[A_L \, U \, A_R \, U^{-1} \, A_L \, dU U^{-1} + A_R \, U^{-1} \, A_L \, U \, A_R \, U^{-1} dU] \\ &- \frac{iN}{48\pi^2} \int_{\mathcal{M}} \text{Tr}[A_R^3 \, U^{-1} \, A_L \, U - A_L^3 \, U \, A_R \, U^{-1} + \frac{1}{2} U \, A_R \, U^{-1} \, A_L \, U \, A_R \, U^{-1} \, A_L] \end{split}$$

with $U \Longrightarrow g_L g_R^{\dagger}$.

Anomalies & Chiral Magnetic Effect

- This action gives the chiral magnetic effect (& other anomaly related effects) for all flavor gauge fields and chemical potentials (A₀ components become the chemical potentials μ.)
- What is the chiral magnetic effect? (KHARZEEV, MCLERRAN, WARRINGA, FUKUSHIMA +)

In the quark-gluon plasma, in the presence of a magnetic field, because of the chiral anomaly \Longrightarrow Charge separation

$$J_0 = \frac{e^2}{2\pi^2} \, \nabla \theta \cdot \vec{B}$$

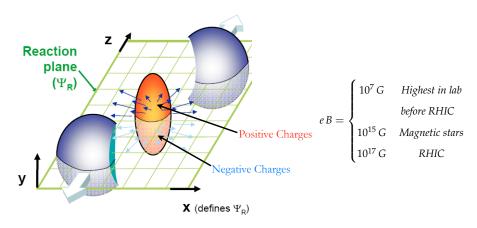
⇒ Chiral induction

$$J_i = -\frac{e^2}{2\pi^2} \,\dot{\theta} \, B_i$$

• Here θ is like the θ -angle or η' field. In a plasma, $\dot{\theta} \to \frac{1}{2}(\mu_L - \mu_R)$, so

$$J_i = -\frac{e^2}{4\pi^2} (\mu_L - \mu_R) B_i$$

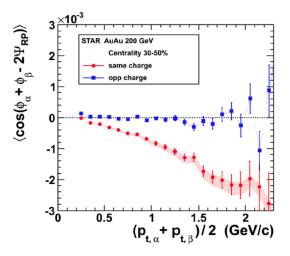
Chiral asymmetry leads to an electromagnetic current



 The electromagnetic current leads to charge separation which can be seen in asymmetry of charge distribution of final state particles.

Anomalies & Chiral Magnetic Effect (cont'd.)

• There is some experimental evidence for this.



(STAR collaboration)

Anomalies & Chiral Magnetic Effect (cont'd.)

Going back to the WZ action, the electromagnetic current is given by (previous refs, also
 CALLAN & WITTEN)

$$\begin{split} J^{\mu} &= J_{3}^{\mu} + \frac{e}{16\pi^{2}} \epsilon^{\mu\nu\alpha\beta} \mathrm{Tr} \left[Q(\partial_{\nu} U \, U^{-1} \, \partial_{\alpha} U \, U^{-1} \, \partial_{\beta} U \, U^{-1} \\ &+ U^{-1} \partial_{\nu} U \, U^{-1} \partial_{\alpha} U \, U^{-1} \partial_{\beta} U) \right] \\ &+ i \frac{e^{2}}{4\pi^{2}} \epsilon^{\mu\nu\alpha\beta} \partial_{\nu} A_{\alpha} \mathrm{Tr} \left[Q^{2} (\partial_{\beta} U \, U^{-1} + U^{-1} \partial_{\beta} U) + \frac{1}{2} (Q \partial_{\beta} U \, Q U^{-1} \\ &- Q U Q \partial_{\beta} U^{-1}) \right] \end{split}$$

• We can restrict to two flavors by choosing

$$U = e^{i\theta} \begin{bmatrix} V & 0 \\ 0 & 1 \end{bmatrix}$$

The current is now

$$J^{\mu} = J_{3}^{\mu} + \frac{e}{48\pi^{2}} \epsilon^{\mu\nu\alpha\beta} \operatorname{Tr}(\mathcal{I}_{\nu} \mathcal{I}_{\alpha} \mathcal{I}_{\beta}) + i \frac{e^{2}}{16\pi^{2}} \epsilon^{\mu\nu\alpha\beta} \partial_{\nu} A_{\alpha} \operatorname{Tr}\left[\left(\Sigma_{3L} + \Sigma_{3R}\right) I_{\beta}\right] + J_{\theta}^{\mu}$$

$$J^{\mu}_{\theta} = -\frac{e^{2}}{4\pi^{2}} \epsilon^{\mu\nu\alpha\beta} \partial_{\nu} A_{\alpha} \partial_{\beta} \theta \left[2 + \frac{1}{4} \operatorname{Tr}\left(\Sigma_{3L} \Sigma_{3R} - 1\right)\right]$$

$$\mathcal{I}_{\beta} = g_{L}^{-1} \partial_{\beta} g_{L} - g_{R}^{-1} \partial_{\beta} g_{R}, \qquad \Sigma_{3L} = g_{L}^{-1} \sigma_{3} g_{L}, \ \Sigma_{3R} = g_{R}^{-1} \sigma_{3} g_{R}.$$

• If we further restrict to $g_L = g_R$, we get

$$\begin{split} J^{\mu}_{\theta} &= -\frac{e^2}{2\pi^2} \epsilon^{\mu\nu\alpha\beta} (\partial_{\nu} A_{\alpha}) \, \partial_{\beta} \theta \\ J_i &= -\frac{e^2}{4 \, \pi^2} \left(\mu_{L} - \mu_{R} \right) B_i \end{split}$$

This reproduces the chiral magnetic effect which was originally calculated using Feynman diagrams (Kharzeev, McLerran, Warringa, Fukushima +).

The full set of equations describe hydrodynamic transport of flavor charges.

THE CHIRAL ISOSPIN EFFECT

- The anomaly term Γ_{WZ} also has terms proportional to Z_{μ} , so there is also an induced isospin current (CAPASSO, NAIR, TEKEL).
- The relevant term is

$$\Gamma_{W\!Z} = -\frac{N\!e^2}{6\,\pi^2}(\cot2\theta_W)\,\int\epsilon^{\mu\nu\alpha\beta}Z_\mu\partial_\nu A_\alpha\,\partial_\beta\theta$$

This leads to

$$J^{Z\mu} = -\frac{e}{8\pi^2}(\cos 2\theta_W) \,\epsilon^{\mu\nu\alpha\beta} F_{\nu\alpha} \,\partial_\beta \theta$$
$$J^{3\mu} = \frac{e}{8\pi^2} (\mu_L - \mu_R) \,B^i$$

• In terms of pion fields, $J^{3\,\mu}\approx -\frac{1}{2}f_\pi\partial^\mu\Pi^0+\cdots$. So we can interpret this as a pion field of gradient

$$\partial^i \Pi^0 = -\frac{e}{4 \pi^2 f_\pi} (\mu_L - \mu_R) B^i$$

• This can manifest itself as an asymmetry in the neutral pion distribution.

- Generally, there is a contribution even when the background fields are zero.
- If we eliminate the group elements in favor of velocities, we get

$$\begin{split} J^{\mu} &= J_{3}^{\mu} + J_{\theta}^{\mu} + i \frac{e^{2}}{16\pi^{2}} \epsilon^{\mu\nu\alpha\beta} \, \partial_{\nu} A_{\alpha} \, \mathrm{Tr} \left[\left(\Sigma_{3L} + \Sigma_{3R} \right) I_{\beta} \right] \\ &+ \frac{1}{16\pi^{2}} \epsilon^{\mu\nu\alpha\beta} \partial_{\nu} \mathrm{Tr} (g_{L}^{-1} \partial_{\alpha} g_{L} \, g_{R}^{-1} \partial_{\beta} g_{R}) \\ &+ \frac{e}{12\pi^{2}} \epsilon^{\mu\nu\alpha\beta} \left[\left(\frac{\partial F}{\partial n_{3}} \right)^{2} \, u_{3L \, \nu} \, \partial_{\alpha} u_{3L \, \beta} - \left(\frac{\partial F}{\partial m_{3}} \right)^{2} \, u_{3R \, \nu} \, \partial_{\alpha} u_{3R \, \beta} \right]. \end{split}$$

A left-right asymmetry with nonzero vorticity can generate an electromagnetic current

The standard model can have mixed gauge-gravity anomalies in some restricted cases.
 There are other anomaly related effects which can arise. We will not discuss them here (See notes and references).

Thank You