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PLAN

Quantum theory is defined as a unitary irreducible representation of the algebra of observables.

Geometric quantization gives a way to realize this, elucidating the role of the geometry and

topology of the phase space.

Classical phase space dynamics

Pre-quantum Hilbert space, operators, polarization

Role of topology: H1(M,R), H2(M,R)

Quantizing S2 and G/H

Chern-Simons theory (and WZW theory)

θ-vacua in gauge theories

Statistics of holes in the fractional quantum Hall effect

Fluid dynamics (Group theoretic approach and anomalies)
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THE SYMPLECTIC STRUCTURE

Phase space = A smooth even dimensional manifold M endowed with a symplectic structure Ω

Ω is a differential 2-form on M which is closed and nondegenerate.

• Closed: dΩ = 0

• Nondegenerate: For any vector field ξ on M, iξΩ = 0 ⇒ ξ = 0

Ω = 1
2 Ωµν dqµ ∧ dqν

The condition dΩ = 0 becomes

dΩ =
∂Ωµν

∂qα
dqα ∧ dqµ ∧ dqν

=
1
3

[
∂Ωµν

∂qα
+
∂Ωαµ

∂qν
+
∂Ωνα

∂qµ

]
dqα ∧ dqµ ∧ dqν

= 0

Interior contraction with ξ = ξµ(∂/∂qµ) is

iξΩ = ξµΩµνdqν

iξΩ = 0⇒ ξ = 0 ≡ ξµΩµν = 0⇒ ξµ = 0 ;⇐⇒ Ω is nondegenerate as a matrix
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THE SYMPLECTIC STRUCTURE (cont’d.)

Inverse of Ω can be defined by

Ωµν Ωνα = δ αµ

(If Ω has zero modes, one has gauge symmetries.)

Since dΩ = 0, we can write

Ω = dA Ωµν =
∂

∂qµ
Aν −

∂

∂qν
Aµ

What are the qualifications to this statement?

• If there are noncontractible 2d-surfaces Σ such that∫
Σ

Ω 6= 0

thenA cannot exist globally. (Equivalent toH2(M) 6= 0; e.g. CS, WZW theories)

• Even ifH2(M) = 0, one can have inequivalentA’s. For example,A andA+ A give

same Ω if dA = 0.

I Evidently A = dΛ is one possibility (Canonical transformations)

I One can have A 6= dΛ with dA = 0⇐⇒H1(M) 6= 0 (e.g. θ-vacua)
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CANONICAL TRANSFORMATIONS

Transformations of (phase space) coordinates which preserve Ω are canonical

transformations.

For infinitesimal transformations, qµ → qµ + ξµ, change in Ω is

δΩ =

[
1
2 Ωµν(q + ξ)d(qµ + ξµ) ∧ d(qν + ξν)− 1

2 Ωµν(q)dqµ ∧ dqν
]
≡ LξΩ

= d(iξΩ) + iξdΩ = d(iξΩ)

= 0

The solution is iξΩ = −df (ifH1(M) = 0).

Conversely, for any function f , one can define ξµ = Ωµν∂ν f =⇒ LξΩ = 0.

This leads to

Functions on M ⇐⇒ Vector fields which preserve Ω

Generating function of canonical transformation Hamiltonian vector fields
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CANONICAL TRANSFORMATIONS (cont’d.)

If ξ and η preserve Ω, so does their Lie commutator

[ξ, η]µ = ξν∂νη
µ − ην∂νξµ

If ξ ↔ f and η ↔ g, then there is a function corresponding to [ξ, η]; this is called the

Poisson bracket −{f , g} and is defined by

{f , g} = iξiηΩ = ηµξνΩµν = −iξdg = iηdf = Ωµν∂µf∂νg

The Poisson bracket obeys

{f , g} = − {g, f}

{f , {g, h}}+ {h, {f , g}}+ {g, {h, f}} = 0

Poisson brackets are important because the change in a function on phase space due to a

canonical transformation is

δF = ξµ∂µF = {F, f}
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CANONICAL TRANSFORMATIONS (cont’d.)

The change in the canonical 1-form is given by

δA = LξA = d(iξA− f ) = dΛ

Classical dynamics is given by

Ωµν
∂qν

∂t
=

∂H
∂qµ

This can be obtained from an action

S =

∫ tf

ti

dt
(
Aµ

dqµ

dt
− H

)
Variation of the action gives

δS = iξA(tf )− iξA(ti) +

∫
dt
(

Ωµν
dqν

dt
−
∂H
∂qµ

)
ξµ

Given the action, the boundary term in its variation can be used to identifyA and, hence,

Ω.
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CANONICAL TRANSFORMATIONS (cont’d.)

As an example, consider the usual scalar field theory with

S =

∫
d4x

[
1
2
ϕ̇2 −

1
2

(∇ϕ)2 −
1
2

m2ϕ2 − αϕ4
]

The variation of the action leads, upon time-integration, to the boundary term

δS =

∫
d3x ϕ̇ δϕ

]tf

ti
+

∫
d4x [· · · ] =⇒ A =

∫
d3x ϕ̇ δϕ

A less obvious case is the quantization in lightcone coordinates. Define

u =
1
√

2
(t + z), v =

1
√

2
(t− z)

In this case

S =

∫
du dv d2xT [∂uϕ∂vϕ− · · · ] =⇒ A =

∫
dv d2xT ∂vϕ δϕ
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QUANTIZATION

Quantum Theory = Unitary Irreducible Representation of the Algebra of Observables

The problem of quantization is: How do we realize this explicitly?

• Canonical transformations⇐⇒ Unitary transformations

• (Poisson bracket) classical algebra of observables⇐⇒ Commutator algebra of

operators

• Ensure irreducibility

Geometric quantization provides a way to do this

STRATEGY:

1. Define pre-quantum wave functions and pre-quantum operators

2. Impose a polarization to achieve irreducibility
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QUANTIZATION (cont’d.)

Since canonical transformations areA → A+ dΛ, we consider wave functions to have the

property

Ψ(q)→ eiΛ Ψ(q), A → A+ dΛ

Ψ depends on all phase space coordinates. They are analogous to fields coupled to a U(1)

gauge fieldA. (They are sections of a line bundle on M with curvature Ω.)

The Ψ’s are pre-quantum wave functions and form a (pre-quantum) Hilbert space with the

inner product

(1|2) =

∫
dσ(M) Ψ∗1 Ψ2

dσ(M) = Ω ∧ Ω · · · ∧ Ω ∼ det(Ω) d2nq.

How does Ψ change under qµ → qµ + ξµ? Under such a change,A → A+ iξA− f , so that

δΨ = ξµ∂µΨ − i( iξA− f )Ψ

= ξµ (∂µ − iAµ) Ψ + i f Ψ = (ξµDµ + i f ) Ψ

The first term gives change of Ψ as a function, the second compensates for the change ofA.
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QUANTIZATION (cont’d.)

Define the pre-quantum operator corresponding to f as

P(f ) = −i(ξ · D + if )

In terms of Hamiltonian vector fields, f ↔ ξ, g↔ η, {f , g} ↔ −[ξ, η]; this gives

[P(f ),P(g)] = [−iξ · D + f ,−iη · D + g]

= − [ξµDµ, ηνDν ]− iξµ[Dµ, g] + iηµ[Dµ, f ]

= iξµηνΩµν − (ξµ∂µη
ν)Dν + (ηµ∂µξ

ν)Dν − iξµ∂µg + iηµ∂µf

= i (−ξµηνΩµν + i[ξ, η] · D)

= i
(
−i (i[η,ξ]D) + {f , g}

)
= iP({f , g})

The pre-quantum operators form a representation of the Poisson bracket algebra of

functions on the phase space, with [A,B] ∼ i{A,B}.

V.P. NAIR Geometric Quantization October 6-10, 2014 11 / 84



QUANTIZATION (cont’d.)

We get a representation, but this is reducible in general, since Ψ depends on all phase

space variables.

Illustrate by example: Point-particle in one space dimension

Ω = dp ∧ dx, A = p dx

Hamiltonian vector fields and pre-quantum operators for q and p are

x←→ −
∂

∂p
, p←→

∂

∂x

P(x) = i
∂

∂p
+ x, P(p) = −i

(
∂

∂x
− ip

)
+ p = −i

∂

∂x

[P(x),P(p)] = i, so that we have a representation of the Poisson bracket algebra.

Consider a subset of wave functions obeying

∂Ψ

∂p
= 0

In this case, P(x) = x, P(p) = −i ∂
∂x , which still obey [P(x),P(p)] = i.

We have a representation on a subspace =⇒ previous representation is reducible.
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QUANTIZATION (cont’d.)

Obtain irreducibility by subsidiary conditions on Ψ which restrict its dependence to half

the number of variables (Choice of polarization).

Choose n vector fields Pi = Pµi (∂/∂qµ), obeying

Ωµν Pµi Pνj = 0

and impose

Pµi DµΨ = 0

The vectors Pi define the polarization. The restricted wave functions are the true wave

functions of the theory.

Integrability conditions for this:

[Pµi Dµ,P
ν
j Dν ] Ψ = 0

This is obtained if

[Pµi
∂

∂qµ
,Pνj

∂

∂qν
] = Ck

ij Pαk
∂

∂qα
, Ωµν Pµi Pνj = 0
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QUANTIZATION (cont’d.)

The true wave functions do not depend on half the number of phase space coordinates, so

one cannot integrate using dσ(M)

What should be the inner product on the true wave functions?

Generally difficult, no natural volume measure on restricted subspace of phase space.

One case where this is possible: M is a Kähler space, Ω is proportional to the Kähler form.

For a Kähler space,

Ω = Ωāa dxa ∧ dx̄ā =
i
2
∂a∂āK dxa ∧ dx̄ā = dA

Aa = −
i
2
∂aK, Aā =

i
2
∂āK

Metric gāa = ∂a∂āK
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QUANTIZATION (cont’d.)

Since Ωab = 0, choose the (holomorphic or Bargmann) polarization condition

DāΨ =
(
∂ā + 1

2∂āK
)

Ψ = 0

Ψ = exp(− 1
2 K) F

F is holomorphic, with ∂āF = 0.

The inner product is

〈1|2〉 =

∫
dσ(M) e−K F∗1 F2

Operator = Pre-quantum operator subject to polarization if it preserves polarization;

otherwise construct matrix element directly.
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TOPOLOGICAL FEATURES: H1(M,R)

ConsiderA andA+ A which lead to same Ω,

dA = Ω, d(A+ A) = Ω =⇒ dA = 0

A = dΛ =⇒ remove it by canonical (unitary) transformation, Ψ =⇒ eiΛΨ.

We can have dA = 0 with A 6= dΛ; this meansH1(M,R) 6= 0.

We can try Ψ = exp
(
i
∫ q

0 A
)

Φ.

0

q

C

C′

0

q

C

C′

The path-dependence of the phase factor:

• ∫C A−
∫

C′ A =
∮

A =
∫

S dA = 0

• If the path C− C′ is noncontractible with no surface S whose boundary is C− C′,

then
∮

A can be nonzero.
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TOPOLOGICAL FEATURES: H1(M,R)

Using Ψ = exp
(
i
∫ q

0 A
)

Φ eliminates A but Φ need not be single-valued.

Let A = θα where θ is a constant and
∫
α = 1 for a single traversal of the basic

noncontractible path corresponding to C− C′ (once around the red dot).

Then for n traversals of the path,
∮

A = θ n.

We can eliminate A and use Φ; but Φ is not single-valued and changes by exp(iθn) going

around the noncontractible path n times.

We have an extra constant θ required to define the quantum theory.

Examples:

• Fractional statistics in two spatial dimensions

• Theta vacua in quantum chromodynamics
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TOPOLOGICAL FEATURES: H2(M,R)

This occurs when we have closed 2-forms which are not exact; i.e., dΩ = 0, but Ω 6= dA for

any globally definedA.

Correspondingly, there are two-surfaces which are closed but are not boundaries of any

3-volumes

If Ω = dA, withAwell-defined globally, for a closed surface Σ,∫
Σ

Ω =

∫
∂Σ
A = 0

If Ω 6= dA, the integral of Ω over a closed noncontractible 2-surface can be nonzero.

I(Σ) =

∫
Σ

Ω

I(Σ)− I(Σ′) =

∫
Σ−Σ′

Ω =

∫
V

dΩ = 0

The integral of Ω over any closed two-surface is a topological invariant, invariant under

small deformations of the surface.

If Σ is contractible, deform Σ to zero =⇒
∫
Σ Ω = 0.

Otherwise, I(Σ) can be nonzero.
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TOPOLOGICAL FEATURES: H2(M,R)

Example of Σ as a two-sphere:

• Cover the surface with two patches, a northern hemisphere and a southern

hemisphere, with Ω = dAN and Ω = dAS on corresponding patches

• On the overlap region, the equator E,

AN = AS + dΛ

ΨN = exp(iΛ) ΨS

∆Λ =

∮
E

dΛ =

∫
E
AN −AS =

∫
∂N
AN +

∫
∂S
AS =

∫
N

Ω +

∫
S

Ω =

∫
Σ

Ω

Λ is not single-valued on the equator; but Ψ must be. Thus exp(i∆Λ) = 1, or

∫
Σ

Ω = 2πn, (Dirac; Generalized Bohr-Sommerfeld condition)

Examples of this are:

• Charged particle in a magnetic monopole background

• Chern-Simons and WZW theories
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SUMMARIZING QUANTIZATION

We will consider quantization with the holomorphic polarization.

A phase space which is also Kähler; the symplectic two-form must be a multiple of the

Kähler form.

The polarization condition is chosen as Dā Ψ = 0.

The inner product of the prequantum Hilbert space = Square integrability on the phase

space⇒ Inner product on the true Hilbert space in the holomorphic polarization.

f (q) which preserves the polarization⇒ Prequantum operator P(f ) restricted to the true

(polarized) wave functions.

For observables which do not preserve the polarization, one has to construct infinitesimal

unitary transformations whose classical limits are the required canonical transformations.

If the phase space M has noncontractible two-surfaces, then the integral of Ω over any of

these surfaces must be quantized in units of 2π.

IfH1(M,R) is not zero, then there are inequivalentA’s for the same Ω and we need extra

angular parameters to specify the quantum theory completely.
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QUANTIZING THE TWO-SPHERE

Take the phase space as the two-sphere S2 ∼ CP1 ∼ SU(2)/U(1).

This is a Kähler manifold; basic parameters are:

Coordinates z = x + iy, z̄ = x− iy

Kähler two-form ω = i dz ∧ dz̄/(1 + zz̄)2

Metric ds2 = dz dz̄/(1 + zz̄)2

Riemannian curvature R1 2 = 4 dx ∧ dy/(1 + zz̄)2

Euler number χ =
∫

(R12/2π) = 2

S2 has nontrivialH2(S2,R) given by ω.

The symplectic two-form is taken as

Ω = n ω = i n
dz ∧ dz̄

(1 + zz̄)2

where n is an integer, in agreement with Dirac-Bohr-Sommerfeld condition.
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QUANTIZING THE TWO-SPHERE (cont’d.)

The symplectic potential is

A =
in
2

[
z dz̄− z̄ dz
(1 + zz̄)

]
=

i
2
∂z̄K dz̄−

i
2
∂zK dz

K = n log(1 + zz̄)

Choose the polarization condition as

(∂z̄ − iAz̄) Ψ =

[
∂z̄ +

n
2

z
1 + zz̄

]
Ψ = 0

This has the solution

Ψ = exp
(
−

n
2

log(1 + zz̄)

)
f (z)

with the inner product

〈1|2〉 = i(n + 1)

∫
dz ∧ dz̄

2π(1 + zz̄)n+2
f1∗f2

Normalizable states correspond to linear combinations of f (z) = 1, z, z2, · · · , zn;

dimension of Hilbert space = n + 1. (Inner product normalized so that Tr(1) = n + 1.)
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QUANTIZING THE TWO-SPHERE (cont’d.)

There are three independent vector fields on S2 which preserve the metric and ω

(Hamiltonian vector fields).

Vector field Function on phase space

ξ+ = i
(
∂

∂z̄
+ z2 ∂

∂z

)
J+ = −n

z
1 + zz̄

ξ− = i
(
∂

∂z
+ z̄2 ∂

∂z̄

)
J− = −n

z̄
1 + zz̄

ξ3 = i
(

z
∂

∂z
− z̄

∂

∂z̄

)
J3 = −

n
2

(
1− zz̄
1 + zz̄

)
Check one case:

iξ+Ω = i(∂z̄ + z2∂z) c in
dz ∧ dz̄

(1 + zz̄)2

= −n
[
−

dz
(1 + zz̄)2

+
z2dz̄

(1 + zz̄)2

]
= −d

[
−

nz
(1 + zz̄)

]
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QUANTIZING THE TWO-SPHERE (cont’d.)

The pre-quantum operators are

P(J+) =

(
z2∂z −

n z
2

2 + zz̄
1 + zz̄

)
− iξz̄

+Dz̄

P(J−) =

(
−∂z −

n
2

z̄
1 + zz̄

)
− iξz̄
−Dz̄

P(J3) =

(
z∂z −

n
2

1
1 + zz̄

)
− iξz̄

3Dz̄

On the polarized wave functions, Dz̄Ψ = 0, giving the quantum operators acting on f (z),

Ĵ+ = z2∂z − n z

Ĵ− = −∂z

Ĵ3 = z∂z − 1
2 n

These obey SU(2) algebra.

The full Hilbert space corresponds to one UIR of SU(2) with j = n/2.
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QUANTIZING THE TWO-SPHERE (cont’d.)

The form of the action is

S =

∫
dtAµ

dqµ

dt
= i

n
2

∫
dt

z ˙̄z− z̄ż
1 + zz̄

= i
n
2

∫
dt Tr(σ3 g−1ġ)

g ∈ SU(2); explicitly

g =
1

√
1 + zz̄

 1 z

−z̄ 1


eiθ 0

0 e−iθ
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QUANTIZING THE G/H SPACE

More generally, one can take, for g ∈ G,

S = i
∑

a
wa

∫
dt Tr(ta g−1ġ), A(g) = i

∑
a

waTr(tag−1dg)

Weights of a UIR Diagonal Generators

Ω is a two-form on G/H, H = maximal subgroup of G commuting with
∑

a wata.

Consistent quantization (
∫

Ω = 2πn) requires that {ws}must be the highest weights for a

unitary irreducible representation (UIR) of G.

Upon quantization, this action gives exactly one unitary irreducible representation (UIR)

of G, namely the one corresponding to the highest weight state (w1,w2, · · · ).

V.P. NAIR Geometric Quantization October 6-10, 2014 26 / 84



THE CHERN-SIMONS THEORY IN 2+1 DIMENSIONS

The action is given by

S = −
k

4π

∫
Σ×[ti,tf ]

Tr
[

A ∧ dA +
2
3

A ∧ A ∧ A
]

= −
k

4π

∫
Σ×[ti,tf ]

d3x εµνα Tr
[

Aµ∂νAα +
2
3

AµAνAα
]

Σ is usually taken as a Riemann surface.

Choose A0 = 0 as a gauge condition; then

S = −
ik
π

∫
dtdµΣ Tr(Az̄ ∂0Az) =⇒ A = −

ik
π

∫
Σ

Tr
(
Az̄δAz

)
+ δρ[A]

The symplectic two-form is

Ω = −
ik
π

∫
Σ

dµΣ Tr
(
δAz̄δAz

)
=

ik
2π

∫
Σ

dµΣ δAa
z̄δAa

z

The space of 2-d gauge potentials is Kähler with the Kähler potential

K =
k

2π

∫
Σ

Aa
z̄Aa

z
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THE CHERN-SIMONS THEORY IN 2+1 DIMENSIONS (cont’d.)

(Time-independent) gauge transformations act on the potentials as

Ag = gAg−1 − dgg−1 ≈ A− Dθ infinitesimally

The infinitesimal transformations are generated by the vector field

ξ = −
∫

Σ

(
(Dzθ)

a δ

δAa
z

+ (Dz̄θ)
a δ

δAa
z̄

)
Acting on Ω we get

iξΩ = −
∫ (

(Dzθ)
a δ

δAa
z

+ (Dz̄θ)
a δ

δAa
z̄

)
c

ik
2π

∫
Σ

dµΣ δAa
z̄δAa

z

= −
ik
2π

∫ [
((D̄θ)aδAa

z − (Dθ)aδAa
z̄
]

=
ik
2π

∫
θa(D̄δAz − DδAz̄)

a

=
ik
2π

∫
θaδFa

z̄z = −δ
[∫

θa ik
2π

Fa
z̄z

]
The generator of gauge transformations is

Ga =
ik
2π

Fa
z̄z

This has to vanish on wave functions, GaΨ = 0.
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THE CHERN-SIMONS THEORY IN 2+1 DIMENSIONS (cont’d.)

The prequantum wave functions have the inner product

(1|2) =

∫
dµ(Az,Az̄) Ψ∗1 [Az,Az̄] Ψ2[Az,Az̄]

The symplectic potential is

A = −
ik
2π

∫
Σ

Tr
(
Az̄δAz − AzδAz̄

)
=

ik
4π

∫
Σ

(
Aa

z̄δAa
z − Aa

zδAa
z̄
)

The covariant derivatives withA as the potential are

∇ =
δ

δAa
z

+
k

4π
Aa

z̄, ∇ =
δ

δAa
z̄
−

k
4π

Aa
z

The Bargmann polarization condition is∇Ψ = 0, with the solution

Ψ = exp
(
−

k
4π

∫
Aa

z̄Aa
z

)
ψ[Aa

z̄] = e−
1
2 K

ψ[Aa
z̄]

ψ’s are antiholomorphic, depend only on Az̄’s.
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THE CHERN-SIMONS THEORY IN 2+1 DIMENSIONS (cont’d.)

The inner product is now

〈1|2〉 =

∫
[dAa

z̄dAa
z] e−K(Aa

z̄,A
a
z) ψ∗1 ψ2

On the (anti)holomorphic part ψ of the wave functionals

Aa
z ψ[Aa

z̄] =
2π
k

δ

δAa
z̄
ψ[Aa

z̄]

The condition of GaΨ = 0 thus becomes

(
Dz̄

δ

δAa
z̄
−

k
2π
∂zAa

z̄

)
ψ[Aa

z̄] = 0.

Before solving this, we consider quantization of k.
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THE CHERN-SIMONS THEORY IN 2+1 DIMENSIONS (cont’d.)

Construct a noncontracible two-surface in the configuration space. Start with the loop of

gauge transformations

C = g(x, λ), 0 ≤ λ ≤ 1, g(x, 0) = g(x, 1) = 1

We then define

A(x, λ, σ) = (gAg−1 − dgg−1) σ + (1− σ)A

where 0 ≤ σ ≤ 1.

This goes to A at λ = 0, 1 and at σ = 0. Further, A −→ Ag at σ = 1. Thus this is a closed

two-surface in C = F/G∗.

V.P. NAIR Geometric Quantization October 6-10, 2014 31 / 84



THE CHERN-SIMONS THEORY IN 2+1 DIMENSIONS (cont’d.)

For simplicity, take the starting point as A = 0 to get

A(x, λ, σ) = − dg g−1 σ

δA(x, λ, σ) = g d(g−1δg) g−1σ + dg g−1dσ

The integral of Ω over this surface is∫
Ω =

k
4π

∫
Tr(δA ∧ δA)

=
k

4π
2
∫

Tr
[
d(g−1δg)g−1dg

] ∫
σdσ

= −2π k Q[g]

Q[g] =
1

24π2

∫
Tr(dgg−1)3

Q[g] = Winding number of the map g : S3 → G ∈ Z

Dirac condition =⇒ k must be an integer.
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THE WESS-ZUMINO-WITTEN THEORY

This is defined by an action functional in 2 Euclidean (or 1 + 1) dimensions,

SWZW =
1

8π

∫
M2

d2x
√

g gab Tr(∂aM ∂bM−1) + Γ[M]

Γ[M] =
i

12π

∫
M3

d3x εµνα Tr(M−1∂µM M−1∂νM M−1∂αM) =
i

12π

∫
M3

Tr(M−1dM)3

M(x) ∈ GL(N,C) (or suitable subgroups)

Γ[M] = Wess-Zumino term, defined by integration overM3 with ∂M3 =M2.

ManyM3’s with the same boundaryM2 possible≡ Different ways to extend M(x) toM3.

If M and M′ are two different extensions of the same field, then M′ = MN, with N = 1 on

M2,

Γ[MN] = Γ[M] + Γ[N]−
i

4π

∫
M2

d2x εabTr (M−1∂aM ∂bNN−1)︸ ︷︷ ︸
= 0

N = 1 on ∂M3 =⇒ N is (equivalent to) a map N : S3 → G, classified by Π3(G) (or Q[N]).
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THE WESS-ZUMINO-WITTEN THEORY (cont’d.)

Independence of the extension follows from:

1. Γ[N] = 0 for N ≈ 1 ( to linear order in ∂NN−1).

By successive transformations, Γ[M] is independent of the extension toM3 for all N

connected to identity.

2. If N is homotopically nontrivial, Γ[N] = 2πi Q[N]

(exp(−k Γ[M]) is independent of the extension, if k ∈ Z. So S = k SWZW can be used

as the action for a theory, the WZW theory with level number k.)

In complex coordinates

SWZW =
1

2π

∫
M2

Tr(∂zM ∂z̄M−1) + Γ[M]

SWZW [M h] = SWZW [M] + SWZW [h]−
1
π

∫
M2

Tr(M−1∂z̄M ∂zh h−1)

(Polyakov-Wiegmann identity)

Chiral splitting: Antiholomorphic derivative of M, holomorphic derivative of h

V.P. NAIR Geometric Quantization October 6-10, 2014 34 / 84



THE WESS-ZUMINO-WITTEN THEORY (cont’d.)

Another important property M −→ M + δM = (1 + θ)M, θ = δM M−1 infinitesimal.

δSWZW = −
1
π

∫
Tr
(
∂z̄(δMM−1)∂zMM−1

)
= −

1
π

∫
Tr(δMM−1∂z̄Az)

= −
1
π

∫
Tr(δMM−1DzC̄)

= −
1
π

∫
Tr(C̄ δAz) =

1
2π

C̄aδAa
z

Az = −∂zMM−1, C̄ = −∂z̄M M−1

DzC̄ = ∂zC̄ + [Az, C̄]

Az and C̄ obey the equation

∂z̄Az − ∂zC̄ + [C̄,Az] = 0, Dz

[
δSWZW

δAz

]
=

1
2π
∂z̄Az

This will be useful for evaluating Dirac determinants.
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THE WESS-ZUMINO-WITTEN THEORY (cont’d.)

If we use M†, we get C rather than C̄.

Dz
δSWZW

δAa
z̄

=
1

2π
∂zAz̄

Comparing with wave function for CS theory,

ψ[Ā] = exp
[

k SWZW(M†)
]

provided we can parametrize a general 2-dimensional gauge field as Az = −∂zM M−1.
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THE WESS-ZUMINO-WITTEN THEORY (cont’d.)

A parametrization for gauge potentials

Az = −∂zM M−1 Az̄ = M†−1∂z̄M†

M is a complex matrix. (det M = 1 if gauge group is SU(N).)

For U(1), use elementary result Ai = ∂iθ + εij∂jφ. =⇒M = exp(φ+ i θ).

One can invert ∂z via (
1
∂z

)
xx′

=
1

π(z̄− z̄′)

Write ∂zM = −AzM,

M(x) = 1−
∫

x′

(
1
∂z

)
xx′

Az(x′)M(x′)

= 1−
∫

(∂z)
−1 Az +

∫
(∂z)
−1 Az(∂z)

−1 Az + · · ·

The real advantage is that gauge transformations are homogeneous in terms of M,

A→ Ag = gAg−1 − dg g−1 =⇒ Mg = gM
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THE WESS-ZUMINO-WITTEN THEORY (cont’d.)

Comment: Space not simply connected =⇒ ∃ zero modes for ∂z =⇒ ∃ flat potentials a,

not gauge equivalent to zero.

Example: Torus S1 × S1. Real coordinates ξ1, ξ2, 0 ≤ ξi ≤ 1, with ξ1 = 0 ∼ ξ1 = 1, same

for ξ2.

τ

ξ1

ξ2

z = ξ1 + τξ2, τ = modular parameter

For the torus,the generalized parametrization is

Az = M
[

iπ a
Im τ

]
M−1 − ∂zM M−1

Ambiguity: M and MV(z̄) =⇒ same Az. (Must ensure this does not affect physical results)
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θ-VACUA IN 3+1 DIMENSIONS

Analyze topology and geometry of the space of gauge fields in a Hamiltonian description

Choose A0 = 0 gauge; we are then left with the spatial components Ai(x) which are

Lie-algebra-valued vector fields on space.

A gauge transformation acts on Ai as Ai → Ag
i = g−1Aig + g−1∂ig, g ∈ G.

Define

F̃ ≡ {Set of all gauge potentials Ai}

≡ {Set of all Lie− algebra− valued vector fields on space Rd}

G ≡ {Set of all g(~x) : Rd → G, such that g(~x) −→ constant ∈ G as |~x| −→ ∞}

G∗ ≡ {Set of all g(~x) : Rd → G, such that g(~x) −→ 1 as |~x| −→ ∞}

Evidently G/G∗ = G. This acts as a Noether symmetry classifying charged states in the

theory.

G∗ is the true gauge symmetry, with Ai and Ag
i physically equivalent for g(x) ∈ G∗.
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θ-VACUA IN 3+1 DIMENSIONS (cont’d.)

The physical configuration space is C = F̃/G∗

Consider 2 + 1 dimensions

Π2(C) = Π1(G∗) = Π3(G) =

 Z All compact G 6= SO(4)

Z× Z G = SO(4)

How does this arise?

• An element of G∗ is g(~x) with g→ 1 at spatial infinity⇒ Π0(G∗) = Π2(G) = 0.

• For connectivity, examine closed paths starting and ending at g(~x) = 1. Such a path

is given by g(~x, λ); 0 ≤ λ ≤ 1 parametrizes path, with g(~x, 0) = g(~x, 1) = 1.

• g(~x, λ) : R3 → G with g→ 1 at the ‘boundary’. This is equivalent to a map from S3

to G, classified by Π3(G).

There are noncontractible two-surfaces in C and hence in the phase space.

Gauge theories in 2 + 1 dimensions haveH2(M,R) 6= 0; they can

show Dirac quantization conditions (depending on choice of Ω)
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θ-VACUA IN 3+1 DIMENSIONS (cont’d.)

Consider 3 + 1 dimensions

Π1(C) = Π0(G∗) = Π3(G) =

 Z All compact simple G 6= SO(4)

Z× Z G = SO(4)

How does this arise? Similar reasoning as for 2 + 1 dimensions

There are noncontractible paths in C and hence in phase space.

The phase space is multiply connected with connectivity given by Z (or Z× Z for SO(4)).

Gauge theories in 3 + 1 dimensions have H1(M,R) 6= 0; the quantum

theory will require additional vacuum angles (θ-vacua) to characterize it.
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θ-VACUA IN 3+1 DIMENSIONS (cont’d.)

Start with the Yang-Mills action and choose A0 = 0,

S =
1
4

∫
d4x Fa

µνFaµν =
1
2

∫
d4x (∂0 Aa

i )(∂0Aa
i ) + · · ·

Ea
i

The symplectic potential isA =
∫

d3x Ea
i δAa

i and

Ω =

∫
d3x δEa

i δAa
i = − 2

∫
d3x Tr (δEi δAi)

The condition of gauge invariance (under g ≈ 1 + ϕ) is the Gauss law given by

G(ϕ)Ψ =

∫
d3x ϕa(DiEi)

a Ψ = 0

An element of G∗ is a map g(x) : R3 → G with the condition g→ 1 at spatial infinity.

These are equivalent to maps S3 → G and are characterized by the winding number Q[g].

G∗ =

+∞∑
Q=−∞

⊕G∗Q

This leads to Π1(C) = Z.
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θ-VACUA IN 3+1 DIMENSIONS (cont’d.)

Construct a one-form on C which is closed but not exact.

K[A] = −
1

4π2

∫
Tr(F ∧ δA) =

1
16π2

∫
d3x εijk Fa

jk δAa
i

• Closure: K[A] = δ(SCS/2π), so using δ2 = 0, δK = 0

• But K is not exact, even though K = δ(SCS/2π), because SCS is not gauge-invariant.

It is not a function on C.

• K[A] is the generating element ofH1(C,R).

An example of the noncontractible loop:

Ai(x, τ) = (g Ai g−1 − ∂ig g−1)τ + Ai(x)(1− τ), 0 ≤ τ ≤ 1

This is an open path in F; the end-points are gauge transforms of each other, so it is closed

in C. If the path is contractible, it is deformable to

Ai(x, τ) = A(x)g(x,τ), g(x, 0) = 1, g(x, 1) = g(x)

g(x, τ) makes g(x) homotopic to g = 1. This is not possible if Q[g] 6= 0.
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θ-VACUA IN 3+1 DIMENSIONS (cont’d.)

Integrate K along such a curve,∮
K[A] =

1
2π

(
SCS[Ag]− SCS[A]

)
= −

1
8π2

∫
Tr(F ∧ F) (Instanton number)

= −
1

32π2

∫
d4x Tr(FµνFαβ)εµναβ

Since δK = 0, we get the same Ω forA andA+ θK.

A =

∫
d3x Ea

i δAa
i + θ K[A]

We need an additional parameter θ to characterize the quantum theory.∮
K is an integer, so we can take 0 ≤ θ ≤ 2π.

This is equivalent to using

S = SYM + θ

[
−

1
8π2

∫
Tr(F ∧ F)

]
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FRACTIONAL QUANTUM HALL EFFECT & FRACTIONAL STATISTICS

For the states with filling fractions ν = 1/(2p + 1) where p is an integer, the N-electron

wave function is the Laughlin function

ΨLaughlin = N exp
(
− 1

2
∑N

i=1 z̄izi

) ∏
1≤i<j≤N

(zi − zj)
2p+1

where z = x1 + ix2.

This leads to an electric current of the form

〈Ji〉 = −ν
e2

2π
εijEj, ν =

1
2p + 1

This corresponds to the observed Hall conductivity, quantized as the reciprocals of odd

integers.

Among the excited states of the system as hole-like excitations with a wave function of the

form

Ψhole =
N∏

i=1

(zi − w)ΨLaughlin =
N∏

i=1

(zi − w)N exp
(
− 1

2
∑N

i=1 z̄izi

) ∏
1≤i<j≤N

(zi − zj)
2p+1

where w is the position of the hole.
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FRACTIONAL QUANTUM HALL EFFECT & FRACTIONAL STATISTICS (cont’d.)

We can consider statistics of holes using an effective action of the form

S =

∫
d3x
[

k
4π
εµναaµ∂νaα + aµ

(
jµ −

e
2π
εµνα∂νAα

)]
The electromagnetic current is

Jα = −
e

2π
εαµν∂µaν

where Jµ denotes electromagnetic current.

The equation of motion for the auxiliary field aµ is

k
2π
εµνα∂νaα + jµ −

e
2π
εµνα∂νAα = 0

We then see that

Jµ =
e
k

jµ −
e2

2πk
εµνα ∂νAα .

Choosing k = 2p + 1 we see that we can reproduce the Hall conductivity correctly in the

absence of holes.

The first term then shows that the charge per hole is e/k.
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FRACTIONAL QUANTUM HALL EFFECT & FRACTIONAL STATISTICS (cont’d.)

For a pair of well-separated holes we can take

jµ = ẇµ1 δ
(2)(x− w1) + ẇµ2 δ

(2)(x− w2)

Focusing just on the holes, the action becomes

Shole =
k

4π

∫
d3x εµναaµ∂νaα +

∫
dt

(
aµ(w1)ẇ1

µ + aµ(w2)ẇ2
µ +

mẇ1
2

2
+

mẇ2
2

2

)
The time-component of the equation of motion for for aµ is

∂zαz̄ − ∂z̄az = −i
π

k

(
δ(2)(x− w1) + δ(2)(x− w2)

)
with the solution

az̄ = −
i

2k

(
1

z̄− w̄1
+

1
z̄− w̄2

)
, az =

i
2k

(
1

z− w1
+

1
z− w2

)
The coincident point w1 = w2 has to be excluded for consistency. We also used

∂z
1

z̄− w̄
= ∂z̄

1
z− w

= π δ(2)(x− w)
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FRACTIONAL QUANTUM HALL EFFECT & FRACTIONAL STATISTICS (cont’d.)

We will also use the a0 = 0 gauge so that the action for the holes simplifies to

S =

∫
dt
[

m
2

( ˙̄w1ẇ1 + ˙̄w2ẇ2) + aw1 ẇ1 + aw̄1
˙̄w1 + aw2 ẇ2 + aw̄2

˙̄w2

]
where we have removed the singularities at the poles. Thus

aw1 =
i

2k
1

w1 − w2
, aw̄1 = −

i
2k

1
w̄1 − w̄2

aw2 =
i

2k
1

w2 − w1
, aw̄2 = −

i
2k

1
w̄2 − w̄1

The coincident point w1 = w2 has been excluded, so the closed path of one hole going

around the other is not contractible. =⇒ Π1(configuration space) = Z 6= 0.

With w2 fixed,

d a = 0 for a = aw1 dw1 + aw̄1 dw̄1 = d
[

i
2k

log
(

w1 − w2

w̄1 − w̄2

)]
a is not exact since ∮

C
a = −

2π
k
6= 0, C encloses w2
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FRACTIONAL QUANTUM HALL EFFECT & FRACTIONAL STATISTICS (cont’d.)

The Hamiltonian corresponding to the action for holes is

H =
1
2

m
(

˙̄w1ẇ1 + ˙̄w2ẇ2
)

From the action we also identify the operators

mẇ1 = −i
∂

∂w̄1
− aw̄1 , m ˙̄w1 = −i

∂

∂w1
− aw1

mẇ2 = −i
∂

∂w̄2
− aw̄2 , m ˙̄w2 = −i

∂

∂w2
− aw2

Write the wave function as

Ψ(x1, x2) = exp
[

1
2k

log
(

w̄1 − w̄2

w1 − w2

)]
Φ(x1, x2)

The action of H on Φ is

H Φ = −
1

2m

(
∂

∂w1

∂

∂w̄1
+

∂

∂w2

∂

∂w̄2

)
Φ
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FRACTIONAL QUANTUM HALL EFFECT & FRACTIONAL STATISTICS (cont’d.)

We can consider the exchange of the two holes as due to a rotation of the two points by π

followed by a translation to bring them back to the same points. We take Φ to be

symmetric under exchange. As for the phase factor the translation does not change it. The

π-rotation leads to

Ψ(x2, x1) = e−iπ/k Ψ(x1, x2)

With k = 2p + 1, we see that the two holes do display fractional statistics.
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FLUID DYNAMICS

Lagrange’s approach

• Newton’s equations for N point-particles → coarse graining using a smooth

density function → fluid dynamics

Point particle ≡ a unitary irreducible representation (UIR) of the Poincaré group

Classical action which upon quantization gives a UIR of a group = A co-adjoint orbit

action

Can we construct fluid dynamics as

Co-adjoint orbit action → coarse graining → fluid dynamics ?
Advantages:

• A single formalism where symmetries are foundational

• Gauge fields → Abelian and nonabelian Magnetohydrodynamics

• Spin, magnetic moment effects

• Gravity easily included (Mathisson-Papapetrou equation)

• Anomalous symmetries (chiral magnetic effect, chiral vorticity effect, etc.)
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THE RELATIVISTIC POINT-PARTICLE

For relativistic point-particles, we must use this action with G = Poincaré group, the group

of translations and Lorentz transformations

We consider Poincaré group = contraction of de Sitter group; this makes some traces easier

to define.

For de Sitter algebra, use standard Dirac γ-matrices with

Jµν =
1
4 i

[γµ, γν ], Pµ =
γµ

r0
, Poincaré = r0 →∞ limit

These obey the commutation rules

[Jµν , Jαβ ] = i
(
ηµα Jνβ − ηµβ Jνα − ηνα Jµβ + ηνβ Jµα

)
[Jµν ,Pα] = i (ηµα Pν − ηνα Pµ)

[Pµ,Pν ] = i
4
r2

0
Jµν

As r0 →∞ we get the Poincaré limit.
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THE RELATIVISTIC POINT-PARTICLE (cont’d.)

A general element is given by

g = exp (iγα xα/r0) Λ, Λ = B(p) R

B(p) =
1√

2m(p0 + m)

p0 + m ~σ ·~p

~σ ·~p p0 + m


Λ is an element of the Lorentz group, R is a pure spatial rotation generated by J12, J23, J31,

and m =
√

p2.
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THE RELATIVISTIC POINT-PARTICLE (cont’d.)

The action is given by

S = i m r2
0

∫
dτ Tr

(
γ0

r0
g−1 dg

dτ

)
+ i

n
2

Tr(J12 g−1 dg) − H

Using Bγ0B−1 = γα pα/m and taking r0 →∞, we find, for the Poincaré group,

S = −
∫

dτ pµ ẋµ + i
n
4

∫
dτ Tr(Σ3 Λ−1 Λ̇) − H, Σ3 =

σ3 0

0 σ3


H generates τ -evolution, so we should set it to zero as a constraint on quantum states.

This leads to the wave equation.

The addition of the term e Aµ ẋµ leads to relativistic charged point-particle dynamics, with

magnetic moment (g = 2) and spin-orbit coupling.
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GENERALIZING TO FLUIDS

Consider the point-particle à la WONG again. Take a collection of particles indexed by λ.

S = −in
∫

dt Tr(σ3 g−1ġ) → S = −i
∫

dt
∑
λ

nλTr(σ3 g−1
λ ġλ)

We can take the continuum limit by λ→ ~x,
∑
λ →

∫
d3x/v, nλ/v→ ρ(x).

This leads to

S = −i
∫

d4x ρ Tr(σ3 g−1ġ)

where g = g(~x, t).

This suggest the relativistic form

S = −i
∫

jµ Tr(σ3 g−1∂µg)

The difficulty for Poincaré is about what replaces ẋµ. Only 3 of the 4 components are

independent; further, role of diffeomorphisms versus translations in the Poincaré group is

not clear.
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THE LAGRANGIAN FOR ORDINARY FLUID DYNAMICS

Ordinary fluid dynamics can be described by a Poisson bracket system

[ρ(x), ρ(y)] = 0

[vi(x), ρ(y)] = ∂xiδ
(3)(x− y)

[vi(x), vj(y)] = −
ωij

ρ
δ(3)(x− y)

ωij = (∂ivj − ∂jvi).

H =

∫
d3x
[

1
2
ρ v2 + V(ρ)

]
We get the usual equations of fluid motion with pressure p = ρ ∂V

∂ρ
− V.

The PBs can be summarized as

[F,G] =

∫ [
δF
δρ
∂i

(
δG
δvi

)
−
δG
δρ
∂i

(
δF
δvi

)
−
ωij

ρ

δF
δvi

δG
δvj

]

for any two functions F, G.
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THE LAGRANGIAN FOR ORDINARY FLUID DYNAMICS (cont’d.)

The helicity C is given by

C =
1

8π

∫
εijk vi ∂jvk = CS term for vi

The helicity Poisson-commutes with all local observables, [F,C] = 0 for all F

=⇒ C is superselected.

Usually if [ξa, ξb] = Kab, the Lagrangian is of the formAa ξ̇a, δA = 1
2 K−1

ab δξ
a ∧ δξb.

Here K is not invertible, δC/δvi is a zero mode.

This is the difficulty in writing down a Lagrangian.

The solution is also clear: We must fix the value of C and seek a parametrization for the

velocity which keeps the same value of C.

Such a parametrization exists. It is the so-called Clebsch parametrization,

vi = ∂iθ + α ∂iβ

θ, α, β are arbitrary functions.
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THE LAGRANGIAN FOR ORDINARY FLUID DYNAMICS (cont’d.)

For vi parametrized in terms of well-defined θ, α, β,

C =

∫
(total derivative) = 0

A suitable action which gives the PBs is now (C.C. LIN)

S =

∫
ρ θ̇ + ρα β̇ −

∫ [
1
2
ρ v2 + V

]
We can also write this as

S =

∫
Jµ (∂µθ + α∂µβ) −

∫ [
J0 −

JiJi

2 ρ
+ V

]
J0 = ρ; elimination of the auxiliary Ji leads to the previous version.

∫
J0 is a constant.

The relativistic generalization is

S =

∫
Jµ (∂µθ + α∂µβ) −

∫
F(n)

F(n) = n + V(n), n2 = J2 = (J0)2 − JiJi.
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GROUP-THEORETIC DESCRIPTION OF FLUIDS

The lesson from this is to treat

• Translational part of action → Clebsch parametrization

• Rest of the action in terms of the co-adjoint orbit version

The general action is thus

S =

∫
d4x

[
jµ (∂µθ + α∂µβ)−

i
4

jµ
(s) Tr(Σ3 Λ−1∂µΛ) + i

∑
a

jµ
(a)Tr(qa g−1Dµ g)

−F({n}))
]

+ S(A)

Generally, we must have different currents jµ, jµ
(s), jµ

(a) for mass flow, spin flow and the

transport of other quantum numbers.

Coupling to gauge fields follow from covariant derivatives on the group elements
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GROUP-THEORETIC DESCRIPTION OF FLUIDS (cont’d.)

F({n}) depends on all invariant combinations of the currents and characterize the nature

of the fluid, n =
√

jµ jµ, na =
√

jµ
(a) jµ (a), etc.

The group-valued fields are related to flow velocities and currents and given by the

equations of motion,

1
n
∂F
∂n

jµ = ∂µθ + α∂µβ

1
na

∂F
∂na

jµ (a) = i Tr (qa g−1Dµ g), etc.

Remark: The Clebsch parametrization can also be written in a “group” form,

−i Tr(σ3 g−1dg) = dθ + α dβ

where g ∈ SU(1, 1) (or SU(2)),

g =
1

√
1− ūu

1 u

ū 1


eiθ/2 0

0 e−iθ/2

 , α =
ūu

(1− ūu)
, β = −

i
2

log(u/ū)
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FURTHER COMMENTS

In terms of the group-theoretic version, the helicity is given by the topological invariant

C = constant
∫

Tr(g−1 dg)3

Another motivation for the action as we formulate it is:

• The full quantum dynamics for a state with density matrix ρ is given by the action

S =

∫
dt Tr

[
ρ0

(
U†i

∂U
∂t
− U† H U

)]
• The variational equation for this is

i
∂ρ

∂t
= H ρ− ρH, ρ = U ρ0 U†

• The canonical 1-form for this action is

A = i Tr(ρ0 U† δU)

where δU includes all possible observables.
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FURTHER COMMENTS (cont’d.)

• Consider a subset of transformations (symmetry transformations which can survive

into the hydrodynamic regime),

δU = −i (tAU) δθA + other transformations︸ ︷︷ ︸
neglect

• This corresponds to

A = Tr(U ρ0 U† tA) δθA = TA δθ
A, TA(θ) = Tr (ρ tA) = 〈tA〉

TA will have appropriate group composition/commutation properties.

• θ’s are essentially collective variables for the theory. The action (at the level of the

θ’s) which gives thisA is the co-adjoint orbit action
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FURTHER COMMENTS (cont’d.)

Now a comment about the Clebsch variables:

• Translational degrees of freedom xµ can be used with the Poincaré group.

• If we keep the ẋµ as fluid velocity, then we get the correct fluid equations, with no

pressure.

• To change to diffeomorphisms, look at the algebra

[M(ξ),M(ξ′)] = M(ξ × ξ′), (ξ × ξ′)i = ξk∂kξ
′i − ξ

′k∂kξ
i

This can be realized by

Ji = π1∂iϕ1 + π2∂iϕ2 + · · ·

for any number of pairs (πi, ϕi).

• We need two pairs for a complete characterization in 3 spatial dimensions.

• Hence, we can argue

Diffeomorphism symmetry =⇒ SU(2) or SU(1, 1) symmetry

for the pairs (πi, ϕi), i = 1, 2
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FURTHER COMMENTS (cont’d.)

• π1, ϕ1 could be viewed as modulus and phase of ψ, ψ∗. How do we interpret the

extra fields?

• For vorticity, we need to compare the velocities of nearby particles. Inside each

coarse-graining unit (around, say,~x), we must have distinct fields representing these

particles.

• ψ(x) and ψ(x + ε) must be counted as independent fields since we want to replace

them by fields at~x upon coarse-graining.

Coarse-grain
unit

1
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WHAT IS TO FOLLOW

We will discuss 3 examples

• SU(2) internal symmetry (Nonabelian Magnetohydrodynamics)

• Magnetohydrodynamics including spin, magnetic moment and spin-orbit effects

• Spin and coupling to gravity

We will also discuss generalization to include anomalies

We will also discuss applying the same formalism to braiding of vortices in a p-wave

superconductor.
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GENERAL ACTION FOR FLUIDS

The general action is thus

S =

∫
d4x

[
jµ (∂µθ + α∂µβ)−

i
4

jµ
(s) Tr(Σ3 Λ−1∂µΛ) + i

∑
a

jµ
(a)Tr(qa g−1Dµ g)

−F({n}))
]

+ S(A)

Structure of action

Transport Current Fields

Mass flow jµ θ, α, β

Spin flow jµ
(s) Lorentz group parameters Λ

Internal charge flow jµ
(a) Internal symmetry group element g

Generally, we must have as many currents as the rank of the group, the corresponding

densities are canonically conjugate to the diagonal angles.

Any further relations among currents would “constitutive” relations, specific to the

physical system.

Coupling to gauge fields follow from covariant derivatives on the group elements
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SU(2) MAGNETOHYDRODYNAMICS

Consider the action (BISTROVIC, JACKIW, LI, NAIR, PI)

S =

∫
Jµm (∂µθ + α∂µβ)− i

∫
jµ Tr(σ3 g−1Dµg)−

∫
F(n) + SYM

Dµg = ∂µg + Aµ g Aµ = −i ta Aa
µ, ta = 1

2σ
a

Jµm = nm Uµ, U2 = 1

jµ = n uµ, u2 = 1

We also include a background field which couples to the color charge.
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SU(2) MAGNETOHYDRODYNAMICS (cont’d.)

The current which couples to Aa
µ is given by

Jaµ = Tr(σ3 g−1tag) jµ = Qa jµ, Qa = Tr(σ3 g−1tag)

This is the current for the nonabelian symmetry and has the Eckart form.

Some of the equations of motion are

∂µjµ = 0

(DµJµ)a = 0

n uµ∂µ(uνF′)− n ∂νF′ = Tr(JµFµν) (“Euler equation”)

The first two equations lead to the fluid generalization of the Wong equations

uµ(DµQ)a = (D0Q)a + ~u · (~DQ)a = 0
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SU(2) MAGNETOHYDRODYNAMICS (cont’d.)

We also have

∂µTµν = Tr (JµFµν)

Tµν has the perfect fluid form.

The nonabelian charge density ρ = ρata (which is the time-component of Jaµ) transforms,

under gauge transformations, as

ρ→ ρ′ = h−1ρ h, h ∈ SU(2)

We can diagonalize ρ at each point by an (~x, t)-dependent transformation, ρdiag = ρ0σ3.

Then ρ = g ρdiag g−1, or

ρa = ρ0 Tr(gσ3 g−1 ta) = j0 Tr(gσ3 g−1 ta)

g diagonalizes the charge density at each point. The eigenvalues are gauge-invariant and

are represented by n. g describes the degrees of freedom corresponding to orientation in

color space. Under a gauge transformation, g→ h−1 g.
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SU(2) MAGNETOHYDRODYNAMICS (cont’d.)

There are two (related) charge densities, j0 and the nonabelian charge density ρa = Ja 0.

The basic (new) Poisson brackets are

{j0(~x), j0(~y)} = 0

{j0(~x), g(~y)} = −i g(~x)

(
σ3

2

)
δ(x− y)

{ρa(~x), ρb(~y)} = f abcρc(~x) δ(x− y)

{ρa(~x), g(~y)} = −i
(
σa

2

)
g(~x) δ(x− y)

Remark: These equations of motion and charge algebra have some points of overlap with

the work of GIBBONS, HOLM, KUPERSHMIDT

A notable feature is (DAI, NAIR):

Since Π3[SU(N)] = Z, there are skyrmion-type (topological) solitons in any

nonabelian magnetohydrodynamics
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ABELIAN MAGNETOHYDRODYNAMICS WITH SPIN

Consider a special case where mass transport and charge transport are described by the

same flow velocity.

This applies when we have one species of particles with the same charge.

Further, for dilute systems, if we neglect the possibility of spin-singlets forming (and

moving independently), we can take spin flow velocity ≈ charge flow velocity

The action for this case is (KARABALI, NAIR)

S = S(A) +

∫
d4x

[
jµ (∂µθ + α∂µβ + eAµ)−

i
4

jµ Tr(Σ3 Λ−1∂µΛ)− F(n, σ)
]

Λ = B R contains the same velocity uµ as in jµ = n uµ.

F depends on n and σ = Sµν Fµν , where Sµν is the spin density,

Sµν =
1
2

Tr (Σ3 Λ−1 Jµν Λ), Jµν =
i
4

[γµ, γν ]
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ABELIAN MAGNETOHYDRODYNAMICS WITH SPIN (cont’d.)

Having the same flow velocity leads to a requirement

2
n
∂F
∂n

∂F
∂σ

= e

This is the fluid analog of the requirement of g = 2 for point-particles.

The equations of motion are the Maxwell equations +

uα∂α(F′ uν)− ∂νF′ = e uλ Fλν −
16e
F′

∂νSλβ(S F S− F S S)λβ + · · ·

uα∂αSµν =
e

F′

[
S λµ Fλν − S λν Fλµ

]
+

1
F′

[
S λµ fλν − S λν fλµ

]
−

16 e
F′2

(uµS λν − uνS λµ )∂λSρβ(S F S− F S S)ρβ + · · ·

fλν = uλ ∂νF′ − uν ∂λF′, F′ =
∂F
∂n

(S F S− F S S)λβ = S ρλ Fρτ Sτβ − F ρλ Sρτ Sτβ

Spin density is subject to precession effects due to pressure gradient terms as

well as due to the external field.
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INCORPORATING ANOMALIES

First consider anomalous U(1) symmetry, the fluid dynamical equations due to SON &

SUROWKA.

By use of the Clebsch parametrization, we can write the action (ABANOV, MONTEIRO, NAIR)

S =

∫
d4x

[
jµ(Vµ + Aµ) +

c
6
εµναβ

(
Aµ Vν∂αVβ + Vµ Aν∂αAβ

)
− µ

√
−j2 + P(µ)

]

Here Vµ = ∂µθ + α∂µβ.

This leads to the anomaly equations

Tµν = µ n Uµ Uν + δµν P

Jµ = n Uµ + εµναβ
[

c
6
µUν ∂α(µUβ) +

c
2
µUν ∂αAβ

]
∂µTµν = Fλµ Jµ, ∂µJµ = −

c
8
εµναβFµνFαβ

(V + A)µ = −µUµ
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INCORPORATING ANOMALIES (cont’d.)

Now we turn to the standard model and the ’t Hooft argument for the Wess-Zumino

action for anomalies

Quarks Mesons
Baryons

Spectators

Anomaly
Cancellation

Confinement

Spectators

Wess-Zumino
Action ΓWZ

Fluid

Spectators

Γ ?

A similar argument for the fluid phase suggests an effective action for anomalies in terms

of fluid variables. What is this action?
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INCORPORATING ANOMALIES (cont’d.)

Since we have formulated fluid dynamics using group variables, this is easy. We can use

the same ΓWZ but using fluid group element instead of meson fields.

The suggestion is (NAIR, RAY, ROY)

S = −i
∫ [

jµ3 Tr
(
λ3

2
g−1

L Dµ gL

)
+ jµ8 Tr

(
λ8

2
g−1

L Dµ gL

)
+ kµ3 Tr

(
λ3

2
g−1

R Dµ gR

)

+ kµ8 Tr
(
λ8

2
g−1

R Dµ gR

)
+ jµ0 Tr

(
g−1

L Dµ gL

)
+ kµ0 Tr

(
g−1

R Dµ gR

)]
− F(n3, n8, n0,m3,m8,m0) + SYM(A) + ΓWZ(AL,AR, gL g†R)

ΓWZ(AL,AR, gL g†R) is the standard Wess-Zumino term ΓWZ(AL,AR,U) with U =⇒ gL g†R.

There are other ways to incorporate anomalies (SON & SUROWKA; SADOFYEV & ISACHENKOV;

ABANOV et al; WIEGMANN; + many others); an approach somewhat similar to ours is by SHU LIN.
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INCORPORATING ANOMALIES (cont’d.)

In full it is given by (WITTEN; KAYMAKCALAN, RAJEEV, SCHECHTER; + ...)

ΓWZ = −
iN

240π2

∫
D

Tr(dU U−1)5 −
iN

48π2

∫
M

Tr[(AL dAL + dAL AL + A3
L) dUU−1]

−
iN

48π2

∫
M

Tr[(AR dAR + dAR AR + A3
R) U−1dU]

+
iN

96π2

∫
M

Tr[AL dUU−1AL dUU−1 − AR U−1dU AR U−1dU]

+
iN

48π2

∫
M

Tr[AL(dUU−1)3+AR(U−1dU)3 + dAL dU AR U−1− dAR d(U−1) AL U]

+
iN

48π2

∫
M

Tr[AR U−1 AL U(U−1dU)2 − AL U AR U−1(dUU−1)2]

−
iN

48π2

∫
M

Tr[(dAR AR + AR dAR) U−1 AL U − (dAL AL + AL dAL) U AR U−1]

−
iN

48π2

∫
M

Tr[AL U AR U−1 AL dUU−1 + AR U−1 AL U AR U−1dU]

−
iN

48π2

∫
M

Tr[A3
R U−1 AL U − A3

L U AR U−1 + 1
2 U AR U−1 AL U AR U−1 AL]

with U =⇒ gL g†R.
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ANOMALIES & CHIRAL MAGNETIC EFFECT

This action gives the chiral magnetic effect (& other anomaly related effects) for all flavor

gauge fields and chemical potentials (A0 components become the chemical potentials µ.)

What is the chiral magnetic effect? (KHARZEEV, MCLERRAN, WARRINGA, FUKUSHIMA + ....)

In the quark-gluon plasma, in the pres-

ence of a magnetic field, because of the

chiral anomaly

=⇒ Charge separation

J0 =
e2

2π2
∇θ · ~B

=⇒ Chiral induction

Ji = −
e2

2π2
θ̇ Bi

Here θ is like the θ-angle or η′ field. In a plasma, θ̇ → 1
2 (µL − µR), so

Ji = −
e2

4π2
(µL − µR) Bi

Chiral asymmetry leads to an electromagnetic current
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ANOMALIES & CHIRAL MAGNETIC EFFECT (cont’d.)

Negative Charges

Positive Charges
e B =



107 G Highest in lab

before RHIC

1015 G Magnetic stars

1017 G RHIC

The electromagnetic current leads to charge separation which can be seen in asymmetry of

charge distribution of final state particles.
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ANOMALIES & CHIRAL MAGNETIC EFFECT (cont’d.)

There is some experimental evidence for this.

(STAR collaboration)
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ANOMALIES & CHIRAL MAGNETIC EFFECT (cont’d.)

Going back to the WZ action, the electromagnetic current is given by (previous refs, also

CALLAN & WITTEN)

Jµ = Jµ3 +
e

16π2
εµναβTr

[
Q(∂νU U−1 ∂αU U−1 ∂βU U−1

+U−1∂νU U−1∂αU U−1∂βU)
]

+i
e2

4π2
εµναβ∂νAαTr

[
Q2(∂βU U−1 + U−1∂βU) +

1
2

(Q∂βU QU−1

−QUQ∂βU−1)
]

We can restrict to two flavors by choosing

U = eiθ

V 0

0 1
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ANOMALIES & CHIRAL MAGNETIC EFFECT (cont’d.)

The current is now

Jµ = Jµ3 +
e

48π2
εµναβTr(Iν Iα Iβ) + i

e2

16π2
εµναβ ∂νAα Tr

[
(Σ3L + Σ3R) Iβ

]
+ Jµθ

Jµθ = −
e2

4π2
εµναβ ∂νAα ∂βθ

[
2 +

1
4

Tr (Σ3L Σ3R − 1)

]
Iβ = g−1

L ∂βgL − g−1
R ∂βgR, Σ3L = g−1

L σ3gL, Σ3R = g−1
R σ3gR.

If we further restrict to gL = gR, we get

Jµθ = −
e2

2π2
εµναβ(∂νAα) ∂βθ

Ji = −
e2

4π2
(µL − µR) Bi

This reproduces the chiral magnetic effect which was originally calculated using Feynman

diagrams (KHARZEEV, MCLERRAN, WARRINGA, FUKUSHIMA + ....).

The full set of equations describe hydrodynamic transport of flavor charges.
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THE CHIRAL ISOSPIN EFFECT

The anomaly term ΓWZ also has terms proportional to Zµ, so there is also an induced

isospin current (CAPASSO, NAIR, TEKEL).

The relevant term is

ΓWZ = −
Ne2

6π2
(cot 2θW)

∫
εµναβZµ∂νAα ∂βθ

This leads to

JZµ = −
e

8π2
(cos 2θW) εµναβFνα ∂βθ

J3µ =
e

8π2
(µL − µR) Bi

In terms of pion fields, J3µ ≈ − 1
2 fπ∂µΠ0 + · · · . So we can interpret this as a pion field of

gradient

∂iΠ0 = −
e

4π2 fπ
(µL − µR) Bi

This can manifest itself as an asymmetry in the neutral pion distribution.
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ANOMALIES & CHIRAL VORTICITY EFFECT

Generally, there is a contribution even when the background fields are zero.

If we eliminate the group elements in favor of velocities, we get

Jµ = Jµ3 + Jµθ + i
e2

16π2
εµναβ ∂νAα Tr

[
(Σ3L + Σ3R) Iβ

]
+

1
16π2

εµναβ∂νTr(g−1
L ∂αgL g−1

R ∂βgR)

+
e

12π2
εµναβ

[(
∂F
∂n3

)2
u3L ν ∂αu3L β −

(
∂F
∂m3

)2
u3R ν ∂αu3R β

]
.

A left-right asymmetry with nonzero vorticity can generate an electromagnetic current

The standard model can have mixed gauge-gravity anomalies in some restricted cases.

There are other anomaly related effects which can arise. We will not discuss them here (See

notes and references).
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Thank You
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