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Quantum theory is defined as a unitary irreducible representation of the algebra of observables.

Geometric quantization gives a way to realize this, elucidating the role of the geometry and

topology of the phase space.

Classical phase space dynamics

Pre-quantum Hilbert space, operators, polarization
Role of topology: H! (M, R), H?(M,R)

Quantizing S? and G/H

Chern-Simons theory (and WZW theory)

f-vacua in gauge theories

Statistics of holes in the fractional quantum Hall effect

Fluid dynamics (Group theoretic approach and anomalies)
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THE SYMPLECTIC STRUCTURE

Phase space = A smooth even dimensional manifold M endowed with a symplectic structure Q2
@ Q is a differential 2-form on M which is closed and nondegenerate.
® Closed: dQ =0
® Nondegenerate: For any vector field { on M, ieQ =0 = £ =0
Q= % Quu dgh Ndg”

@ The condition dQ2 = 0 becomes

oN
i = =Eag® Adgh Adg?
Dqo 0% N dq" N
1[0  u O
~ dg® Adgh A dg¥
3| 0g¢ + ogv + ogh 1 1 1
0

@ Interior contraction with ¢ = £#(9/0g*) is
i€ = £10,dg”

itfQ=0=§=0 = &'Qu =0 = ¢ =0 ; <= Qis nondegenerate as a matrix
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THE SYMPLECTIC STRUCTURE (cont’d.)

@ Inverse of 2 can be defined by
QNV Qre — 6/:1
(If © has zero modes, one has gauge symmetries.)

@ Since d) = 0, we can write

0 0
Q=dA Qv =—Av — —
2 agr agr
@ What are the qualifications to this statement?

o If there are noncontractible 2d-surfaces X such that

/EQ;AO

then A cannot exist globally. (Equivalent to H2(M) # 0; e.g. CS, WZW theories)
e Evenif #?(M) = 0, one can have inequivalent .A’s. For example, A and A + A give
same Q if dA = 0.
> Evidently A = dA is one possibility (Canonical transformations)

> One can have A # dA with dA = 0 <= H!(M) # 0 (e.g. f-vacua)
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CANONICAL TRANSFORMATIONS

@ Transformations of (phase space) coordinates which preserve 2 are canonical
transformations.

@ For infinitesimal transformations, g* — g + £, change in Q is

00

3 (g + €A + €M) Ad(g” +€) — 3 (9)dgh Adg” | = LeQ

A(icQ) +icdQ = d(icQ)

= 0

The solution is igQ = —df (if H}(M) = 0).
@ Conversely, for any function f, one can define {# = Q*”0,f = L:Q = 0.
@ This leads to

Functions on M <= Vector fields which preserve Q2

!

Generating function of canonical transformation Hamiltonian vector fields
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CANONICAL TRANSFORMATIONS (cont’d.)

@ If £ and 7 preserve £, so does their Lie commutator
[57 77]“ = &0t —n"oLEH

@ If¢ «» f and i <> g, then there is a function corresponding to [¢, 7); this is called the
Poisson bracket —{f, g} and is defined by

{fi8} = igin§ = n"€" Qv = —igdg = indf = Q9. fdug
@ The Poisson bracket obeys
{f.¢t = —{s.f}
{fidemr +{nAf. 83 + {8, {hf}t = 0

@ Poisson brackets are important because the change in a function on phase space due to a
canonical transformation is

OF = ¢19,F = {F,f}
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CANONICAL TRANSFORMATIONS (cont’d.)

@ The change in the canonical 1-form is given by
SA=LeA=d(icA—f)=dA

@ Classical dynamics is given by
dq” _ OH

Qv —— = —
Moot T ogr

@ This can be obtained from an action

i dgH
S= [ dt - _H
/ti (A“ dt )

@ Variation of the action gives

H
58 = ic A(ty) — i A(t) +/dt (de‘i o )

dt ogr

@ Given the action, the boundary term in its variation can be used to identify A and, hence,

Q.
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CANONICAL TRANSFORMATIONS (cont’d.)

@ As an example, consider the usual scalar field theory with

1. 1 1
S = /d4x {5# _ E(V(P)z _ Emzwz B a¢4]

@ The variation of the action leads, upon time-integration, to the boundary term
t
5S = /d3x<p&p]tf —|—/d4x [] — A= /d3x<p5<p

@ A less obvious case is the quantization in lightcone coordinates. Define

u—i(t—i—z) v—i(t—z)
V2 ' V2
@ In this case
S:/dudvdsz [Oupdop — -] = A:/dvdsz&,w&p
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QUANTIZATION

Quantum Theory = Unitary Irreducible Representation of the Algebra of Observables

@ The problem of quantization is: How do we realize this explicitly?

® Canonical transformations <= Unitary transformations
e (Poisson bracket) classical algebra of observables <—=- Commutator algebra of
operators

¢ Ensure irreducibility

@ Geometric quantization provides a way to do this
STRATEGY:

1. Define pre-quantum wave functions and pre-quantum operators

2. Impose a polarization to achieve irreducibility
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QUANTIZATION (cont’d.)

@ Since canonical transformations are A — A + dA, we consider wave functions to have the
property
V() =M u(g), A— A+dA
@ ¥ depends on all phase space coordinates. They are analogous to fields coupled to a U(1)
gauge field A. (They are sections of a line bundle on M with curvature 2.)
@ The U’s are pre-quantum wave functions and form a (pre-quantum) Hilbert space with the
inner product
ap) = [ o vi v,
do(M) = QAQ-- AQ ~ det(Q) d¥q.
@ How does ¥ change under g* — g* + £#? Under such a change, A — A +i¢ A —f, so that

24

€O — i(igA—f)T
= 0y —iA) Y +if VU = (EDy+if) T

The first term gives change of ¥ as a function, the second compensates for the change of A.
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QUANTIZATION (cont’d.)

@ Define the pre-quantum operator corresponding to f as
P(f) = —i(€-D+1f)
@ In terms of Hamiltonian vector fields, f <> &, g <> n, {f, g} < —[£, n]; this gives

[P(f),P(g)] [_lf D‘f‘f»—ZUD‘f‘g]

= —["Du,n"Dy] - i€"[Dy, 8] + in" [Dy,f]

= 'Y Quu — (£"0un")Dy + (0" 0uE")Dy — iHOug + in* Ouf
= i(—=€"n"Qu +il¢,n] - D)

= i(=i(ingD) +{f.8})

= iP{f.&})

@ The pre-quantum operators form a representation of the Poisson bracket algebra of

functions on the phase space, with [A, B] ~ i{A, B}.
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QUANTIZATION (cont’d.)

@ We get a representation, but this is reducible in general, since ¥ depends on all phase
space variables.

@ [llustrate by example: Point-particle in one space dimension
Q=dpAndx, A=pdx

@ Hamiltonian vector fields and pre-quantum operators for 4 and p are

rem -2 —2
ap’ P Ox
.0 (0 . )
T I S B

[P(x),P(p)] = i, so that we have a representation of the Poisson bracket algebra.
@ Consider a subset of wave functions obeying
o _,
9
In this case, P(x) = x, P(p) = —i %, which still obey [P(x), P(p)] = i.

We have a representation on a subspace = previous representation is reducible.
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QUANTIZATION (cont’d.)

@ Obtain irreducibility by subsidiary conditions on ¥ which restrict its dependence to half
the number of variables (Choice of polarization).

@ Choose 1 vector fields P; = P*(8/dq*), obeying
Quu PP =0
and impose
PID,T =0

The vectors P; define the polarization. The restricted wave functions are the true wave

functions of the theory.
@ Integrability conditions for this:

[PED,,, PYD,] ¥ =0

@ This is obtained if

d 9 0
PP 5 ]:cfjp,?a—, Quu PP =0
q 7" q°
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QUANTIZATION (cont’d.)

@ The true wave functions do not depend on half the number of phase space coordinates, so

one cannot integrate using do (M)
@ What should be the inner product on the true wave functions?
@ Generally difficult, no natural volume measure on restricted subspace of phase space.
@ One case where this is possible: M is a Kahler space, 2 is proportional to the Kéhler form.

@ For a Kdhler space,

Q = Qudd AdE = %auaﬁK A A dF = dA

—%auK, Az = Lok

e =2

Metric gz = 9.0:K
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QUANTIZATION (cont’d.)

@ Since Q,, = 0, choose the (holomorphic or Bargmann) polarization condition

Div = (n+ oK) w =0
v = exp(—%K)F

F is holomorphic, with O;F = 0.
@ The inner product is

(12) = /do(M) e KFrR,

@ Operator = Pre-quantum operator subject to polarization if it preserves polarization;

otherwise construct matrix element directly.
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TOPOLOGICAL FEATURES: H' (M, R)

@ Consider A and A + A which lead to same €2,
dA=Q, dA+A)=Q — dA=0

@ A = dA = remove it by canonical (unitary) transformation, ¥ = ¢/ 0.
@ We can have dA = 0 with A # dA; this means H! (M, R) # 0.
@ Wecantry ¥ = exp (i [j A) ®.

oq oq
C C
/ o /
0 0
@ The path-dependence of the phase factor:

o [(A-JoA=¢A=[;dA=0
e If the path C — C’ is noncontractible with no surface S whose boundary is C — C’,

then § A can be nonzero.
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TOPOLOGICAL FEATURES: H' (M, R)

@ Using ¥ = exp (i Oq A) @ eliminates A but ® need not be single-valued.

@ Let A = o where 6 is a constant and [ « = 1 for a single traversal of the basic

noncontractible path corresponding to C — C’ (once around the red dot).
@ Then for 1 traversals of the path, § A = 6 n.

@ We can eliminate A and use ®; but @ is not single-valued and changes by exp(ifn) going

around the noncontractible path n times.
@ We have an extra constant  required to define the quantum theory.
@ Examples:

® Fractional statistics in two spatial dimensions

® Theta vacua in quantum chromodynamics
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TOPOLOGICAL FEATURES: H?(M, R)

This occurs when we have closed 2-forms which are not exact; i.e., dQ = 0, but Q # d.A for
any globally defined A.

Correspondingly, there are two-surfaces which are closed but are not boundaries of any
3-volumes

If Q@ = d A, with A well-defined globally, for a closed surface %,

/Q: A=0
p) o%

If 2 # d A, the integral of Q2 over a closed noncontractible 2-surface can be nonzero.

1(2):/29

1(2)—1(2’):[2_2/9:/‘/&2:0

The integral of Q2 over any closed two-surface is a topological invariant, invariant under

small deformations of the surface.

@ If X is contractible, deform X to zero — f 5 2=0.

@ Otherwise, I(X) can be nonzero.
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TOPOLOGICAL FEATURES: H?(M, R)

@ Example of ¥ as a two-sphere:
e Cover the surface with two patches, a northern hemisphere and a southern
hemisphere, with Q = d Ay and Q2 = d.Ag on corresponding patches

® On the overlap region, the equator E,

An

As +dA
exp(iA) ¥g

A= ?{dA /AN AS_/AN+/AS_/Q+/Q /Q

@ A is not single-valued on the equator; but ¥ must be. Thus exp(iAA) =1, or

/ Q = 2mn, (Dirac; Generalized Bohr-Sommerfeld condition)
=
@ Examples of this are:

® Charged particle in a magnetic monopole background

® Chern-Simons and WZW theories
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SUMMARIZING QUANTIZATION

We will consider quantization with the holomorphic polarization.

@ A phase space which is also Kahler; the symplectic two-form must be a multiple of the
Kéhler form.

@ The polarization condition is chosen as D7 ¥ = 0.

@ The inner product of the prequantum Hilbert space = Square integrability on the phase
space = Inner product on the true Hilbert space in the holomorphic polarization.

@ f(q) which preserves the polarization = Prequantum operator P(f) restricted to the true
(polarized) wave functions.

@ For observables which do not preserve the polarization, one has to construct infinitesimal
unitary transformations whose classical limits are the required canonical transformations.

@ If the phase space M has noncontractible two-surfaces, then the integral of 2 over any of
these surfaces must be quantized in units of 2.

@ If #!(M, R) is not zero, then there are inequivalent .A’s for the same Q and we need extra

angular parameters to specify the quantum theory completely.
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QUANTIZING THE TWO-SPHERE

@ Take the phase space as the two-sphere 5% ~ CP! ~ SU(2)/U(1).

@ This is a Kdhler manifold; basic parameters are:

Coordinates z=x+1y, Z=x—1y
Kéhler two-form w=1idz ANdz/(1+ 2zz)?
Metric ds? = dz dz/(1 + zz)?

Riemannian curvature Ry, = 4 dx Ady/(1 + z2)?
Euler number x = [(Riz/2m) =2
@ 52 has nontrivial H?(S%,R) given by w.

@ The symplectic two-form is taken as

dz A dz
Q=nw=in ——
(1+22)2

where 7 is an integer, in agreement with Dirac-Bohr-Sommerfeld condition.
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QUANTIZING THE TWO-SPHERE (cont’d.)

@ The symplectic potential is
in [zdz —zdz
A = - |-
2 [ (14 zz)
nlog(1 + zz)

] =lokd— Lok
2 2

@ Choose the polarization condition as

(82—1'Az)‘~1’=[32+

@ This has the solution
¥ = exp (—g log(1 + 22)) f(z)
with the inner product

dz N dz

<1|2> = l(l’l+1)/m fl*fZ

2 ..

@ Normalizable states correspond to linear combinations of f(z) =1, z, z%,--- ,2";

dimension of Hilbert space = n + 1. (Inner product normalized so that Tr(1) = n + 1.)
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QUANTIZING THE TWO-SPHERE (cont’d.)

@ There are three independent vector fields on S2 which preserve the metric and w

(Hamiltonian vector fields).

Vector field Function on phase space
= (8az+22%) =t
ooi(2t)  nei()

@ Check one case:
i, = i +70,) | in T E

(1+22)2

B dz 24z
= " [_ +=z2 T a +zz)2}

- | -ava)
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QUANTIZING THE TWO-SPHERE (cont’d.)

@ The pre-quantum operators are

o = (Fo-FIE) —idn.
Poo) = (—az o EZZ) — i€ D:
O e I
@ On the polarized wave functions, D; ¥ = 0, giving the quantum operators acting on f(z),
j+ = 229,—-nz
- o= -0
f3 = z0; — % n

@ These obey SU(2) algebra.

@ The full Hilbert space corresponds to one UIR of SU(2) with j = n/2.
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QUANTIZING THE TWO-SPHERE (cont’d.)

@ The form of the action is

dgt n 2z — 7%
s = [atA T =i [
/ Ay =15 / 1+2
- ig/dt Tr(os g~ 1)
g € SU(2); explicitly
1 1 z| €9 0
8= 1122
2z -z 1| |0 e
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QUANTIZING THE G/H SPACE

@ More generally, one can take, for g € G,
S=iy_ w / dt Tr(t” g~ 1¢), Alg) =iy wTr(t"gdg)
a a

Weights of a UIR Diagonal Generators

@ Qisatwo-form on G/H, H = maximal subgroup of G commuting with }~ w,t®.

@ Consistent quantization ([ € = 2mn) requires that {ws} must be the highest weights for a
unitary irreducible representation (UIR) of G.

@ Upon quantization, this action gives exactly one unitary irreducible representation (UIR)

of G, namely the one corresponding to the highest weight state (wy,w», - - - ).
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THE CHERN-SIMONS THEORY IN 2+1 DIMENSIONS

@ The action is given by

k 2
S = ——/ Tr[A/\dA-l-fA/\A/\A}

4 Jox ity 3
k 3 2

= —— dx eV Tr |ApOvAa + —AuALAL
A St ty) 3
¥ is usually taken as a Riemann surface.
@ Choose Ay = 0 as a gauge condition; then

S = —%/dtduz TI'(AZ a()Az) - A= — % TI'(AZ(;AZ) + 6P[A]
i =

™

@ The symplectic two-form is
ik ik 2cAa
a=_* / dps, Te(SA5A.) = 2= / dus; SALSAT
T Ju 2w Jx

@ The space of 2-d gauge potentials is Kdhler with the Kahler potential

K:i/A;Ag
27 Jn

V.P. NAIR Geometric Quantization October 6-10, 2014



THE CHERN-SIMONS THEORY IN 2+1 DIMENSIONS (cont’d.)

@ (Time-independent) gauge transformations act on the potentials as
AS = gAgT! — dggT' =~ A— D6 infinitesimally

@ The infinitesimal transformations are generated by the vector field

5 5
- — | (D0 D:0)"
€=~ [ (g + O 53)
Acting on 2 we get
5 5\ ik
Q= — [((D:0— + (D:0)'—) | = [ dus SALA
i J @0y g+ a0y ) ) 5 [ s atons

_ ik

[(DO)'6AT — (DOY'SAT] = % / 0°(D6A; — D3 A"

iy
- %/euapgz -5 [/eﬂ%z—*@z}

@ The generator of gauge transformations is

G'= Ep;i

This has to vanish on wave functions, G*W¥ = 0.
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THE CHERN-SIMONS THEORY IN 2+1 DIMENSIONS (cont’d.)

@ The prequantum wave functions have the inner product
(1) = [ du(As, 42) U7 1Az Ad] WalAs, A

@ The symplectic potential is

ik ik
A= - 2 ) Tr(Az0A; — AbAz) = o 2(A%&AZ — ALSAL)
@ The covariant derivatives with .A as the potential are

5
A

k - 5k
A V=—-—A
A 5AL  In':

Vv =

@ The Bargmann polarization condition is V¥ = 0, with the solution
k aa a - lK a
Vo= exp(— I AZAT ) PlAT] = e 27 Y[A7]

9’s are antiholomorphic, depend only on Az’s.
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THE CHERN-SIMONS THEORY IN 2+1 DIMENSIONS (cont’d.)

@ The inner product is now
) = [laazang D g g,

@ On the (anti)holomorphic part ¢ of the wave functionals

2 4
ALplAL) = ST 2 A

@ The condition of G*¥ = 0 thus becomes

s k
(Df 5 gazAg) Y[AY] = 0.

@ Before solving this, we consider quantization of k.
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THE CHERN-SIMONS THEORY IN 2+1 DIMENSIONS (cont’d.)

@ Construct a noncontracible two-surface in the configuration space. Start with the loop of

gauge transformations
C=g(xA), 0<X<1, 8(x,0) =g(x,1) =1
@ We then define
Alx,\ o) = (gAg ' — dgg ™ Ho + (1—-0)A

where0 < o < 1.

@ This goes to A at A = 0, 1 and at ¢ = 0. Further, A — A$ at o = 1. Thus this is a closed

two-surface in € = §/&..
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THE CHERN-SIMONS THEORY IN 2+1 DIMENSIONS (cont’d.)

@ For simplicity, take the starting point as A = 0 to get
A(x,\ o) = —dggla

SA(x,\,0) =gd(g'0g) g o + dgg o

@ The integral of 2 over this surface is

/Q - %/Tt(éA/\&A)

= £2/Tr[d(g_15g)g_ldg] /Uda
— —2nkQl
Al = 5 [Tl

Qlg] = Winding number of the map g : $> - G € Z

Dirac condition = k mustbe an integer.
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THE WESS-ZUMINO-WITTEN THEORY

@ This is defined by an action functional in 2 Euclidean (or 1 + 1) dimensions,

1

Swzw = — / d*x\/g §° Tr(8:M M ™1) + T[M]
871' M2

i

127

/ Bx e Te(M™1o,M M™'8,M M~ 19, M) = li Tr(M~tdM)®
M3

M) =
M) 27 J a3

M(x) € GL(N, C) (or suitable subgroups)
@ I'[M] = Wess-Zumino term, defined by integration over M3 with M3 = M?.
@ Many M?’s with the same boundary M? possible = Different ways to extend M(x) to M3.
@ If M and M’ are two different extensions of the same field, then M’ = MN, with N = 1 on
M2,
P[MN] = I[M] + T[N] — — / P e (M~ 9,M 9,NN1)
4 J a2 —_—
=0

N =10n dM?3 = N is (equivalent to) amap N : S — G, classified by I13(G) (or Q[N]).
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THE WESS-ZUMINO-WITTEN THEORY (cont’d.)

@ Independence of the extension follows from:
1. T[N] = 0for N ~ 1 ( to linear order in DNN~1).
By successive transformations, I'[M] is independent of the extension to M3 for all N
connected to identity.
2. If N is homotopically nontrivial, I'|N] = 27i Q[N]
(exp(—k I'[M]) is independent of the extension, if k € Z. So S = k Swzw can be used

as the action for a theory, the WZW theory with level number k.)

@ In complex coordinates
1
Swzw = */ Tr(0:M M) +T'[M]
27 M2
1
Swzw[M h] = Swzw[M] + Swzwh] — - / i Te(M ' 9:M d:hh™ 1)
M

(Polyakov-Wiegmann identity)

@ Chiral splitting: Antiholomorphic derivative of M, holomorphic derivative of i
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THE WESS-ZUMINO-WITTEN THEORY (cont’d.)

@ Another important property M — M + 6M = (1 + )M, 6 = §M M~ infinitesimal.

SSwzw = '{/n(&wMM*U@MM—Q

™

_1 / Tr(SMM ™1 8:A;)
™

-1 / Tr(6MM ' D-C)
™

L / Te(C 6A;) = — 76"
T 21

A= —-0MM~, C=-0MM

D.C = 8:C + [As, O]

@ A and C obey the equation

_ _ 1
0:A. —0.C + [CA) =0, D. [‘WZW] o

= —3A
A, Z Az

This will be useful for evaluating Dirac determinants.
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THE WESS-ZUMINO-WITTEN THEORY (cont’d.)

@ If we use M, we get C rather than C.

@ Comparing with wave function for CS theory,
WIA] = exp [k Swzw (M)]

provided we can parametrize a general 2-dimensional gauge field as A, = —9:-M M -1
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THE WESS-ZUMINO-WITTEN THEORY (cont’d.)

@ A parametrization for gauge potentials
Ar=—-0MM™! Az =M tomt

M is a complex matrix. (det M = 1 if gauge group is SU(N).)

@ For U(1), use elementary result A; = 0,0 + €;;0jp. == M =exp(¢ +i0).

(8)..= 7=

M(x) =1-— /x/ <;Z)xxl Az (X" YM(x")
—1- /(az)*lAer/(az)*l A(0) " A -

@ One can invert 9, via

@ Write .M = —A;M,

@ The real advantage is that gauge transformations are homogeneous in terms of M,

A=A =gAg —dgg! —= M8 =gM
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THE WESS-ZUMINO-WITTEN THEORY (cont’d.)

@ Comment: Space not simply connected = 3 zero modes for 9; = 3 flat potentials a,
not gauge equivalent to zero.
@ Example: Torus S! x S!. Real coordinates £, &,0 < & < 1, withé; =0 ~ ¢ = 1, same

for &.

z=1¢& +7&, 7 =modular parameter
@ For the torus,the generalized parametrization is

ima

A, =M [
Im 7

} M- MM™!

@ Ambiguity: M and MV (z) = same A;. (Must ensure this does not affect physical results)
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#-VACUA IN 3+1 DIMENSIONS

Analyze topology and geometry of the space of gauge fields in a Hamiltonian description

@ Choose Ag = 0 gauge; we are then left with the spatial components A;(x) which are

Lie-algebra-valued vector fields on space.

@ A gauge transformation acts on A; as A; — Af =g lAg+g710g g€G

@ Define
¥ = {Setofall gauge potentials A;}
= {Setofall Lie — algebra — valued vector fields on space R?}
& = {Setofallg(¥): R? — G, such thatg(¥) — constant € G as |¥| — co}
. = {Setofallg(¥):R? — G, such that g(X) — 1as |¥| — oo}

@ Evidently /&, = G. This acts as a Noether symmetry classifying charged states in the
theory.

@ &, is the true gauge symmetry, with A; and Af physically equivalent for g(x) € ®..
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0-VACUA IN 3+1 DIMENSIONS (cont’d.)

@ The physical configuration space is € = §/®.
@ Consider 2 + 1 dimensions
Iy (€) = 1, (6+) = TTa(G) = Z All compact G # SO(4)
Z X% G =50(4)
@ How does this arise?
® An element of &, is g(X) with ¢ — 1 at spatial infinity = IIj(&.) = II,(G) = 0.
e For connectivity, examine closed paths starting and ending at g(¥) = 1. Such a path
is given by g(¥, A); 0 < A < 1 parametrizes path, with g(¥,0) = g(¥,1) = 1.
e g(X,\): R® —» G with g — 1 at the ‘boundary’. This is equivalent to a map from S3
to G, classified by II3(G).

@ There are noncontractible two-surfaces in C and hence in the phase space.

Gauge theories in 2 + 1 dimensions have #2?(M, R) # 0; they can

show Dirac quantization conditions (depending on choice of €2)
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0-VACUA IN 3+1 DIMENSIONS (cont’d.)

@ Consider 3 + 1 dimensions
Z All compact simple G # SO(4)
I (€) = 1o(&«) =1I3(G) =

Zx1Z G = SO(4)

@ How does this arise? Similar reasoning as for 2 + 1 dimensions
@ There are noncontractible paths in C and hence in phase space.

@ The phase space is multiply connected with connectivity given by Z (or Z x Z for SO(4)).

Gauge theories in 3 + 1 dimensions have #!(M,R) # 0; the quantum

theory will require additional vacuum angles (f-vacua) to characterize it.
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0-VACUA IN 3+1 DIMENSIONS (cont’d.)

@ Start with the Yang-Mills action and choose Ay = 0,
S = i/d4xFV:LVFa“V _ ;/d4x(30%4?) T
Ef
@ The symplectic potential is A = [ d%x E? §A¢ and
Q= / dx SES A" = —2 / dBx Tr (BE; 84;)
The condition of gauge invariance (under ¢ = 1 + ¢) is the Gauss law given by
Glp)W = / Px G (DE) W =0

@ Anelement of &, is a map g(x) : R® — G with the condition ¢ — 1 at spatial infinity.

These are equivalent to maps S®> — G and are characterized by the winding number QI[g].

+o00o
G, = Z EB@*Q
Q=—o00

This leads to IT; (¢) = Z.
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0-VACUA IN 3+1 DIMENSIONS (cont’d.)

@ Construct a one-form on € which is closed but not exact.
_ 1 _ 1 3. ijk a
KIA] = —Q/Tr(FAéA) _ 167/01 x ek FY 5 AL

e Closure: K[A] = §(Scs/27), so using 62 = 0, K = 0
® But K is not exact, even though K = §(Scs/27), because Scg is not gauge-invariant.
It is not a function on C.
o K[A] is the generating element of H!(¢, R).
@ An example of the noncontractible loop:
Ai(x,7) = (gAig7 — 98¢ DT + Ai(x)(1 —7), 0<r<1

This is an open path in §; the end-points are gauge transforms of each other, so it is closed
in €. If the path is contractible, it is deformable to

Ai(xa T) = A(x)g(x#)r g(xr O) =1 g(xv 1) = g(x)

8(x, 7) makes g(x) homotopic to g = 1. This is not possible if Q[g] # 0.
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0-VACUA IN 3+1 DIMENSIONS (cont’d.)

@ Integrate K along such a curve,

}[ K[A]

iﬁ (Scs [A%] — Scs [A])

1
= 8 =) / Te(F AF) (Instanton number)

= 52 /d4xTr(lfw,l-"a/g)e’“’aﬁ

@ Since 6K = 0, we get the same Q for A and A + 6K.
A= / dPx EI6A? + 0 K[A]

We need an additional parameter 6 to characterize the quantum theory.
@ § Kisan integer, so we can take 0 < 6 < 27.

@ This is equivalent to using

S=Su + 0 [—%/Tr(l—"/\l—")]
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FRACTIONAL QUANTUM HALL EFFECT & FRACTIONAL STATISTICS

@ For the states with filling fractions v = 1/(2p + 1) where p is an integer, the N-electron

wave function is the Laughlin function

Y aughtin = N exp (—% PO zizi) I @-z¥"

1<i<j<N
where z = x1 + ix,.
@ This leads to an electric current of the form
& 1
0) = —vaaify  v=go

This corresponds to the observed Hall conductivity, quantized as the reciprocals of odd
integers.
@ Among the excited states of the system as hole-like excitations with a wave function of the

form

N N

15N 5 2p+1
Upote = | [z = @)V paugmin = [ [(zi — w) Nexp (—5 >im1 Zizi) I @G-z%
i=1 i=1 1<i<j<N

where w is the position of the hole.
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FRACTIONAL QUANTUM HALL EFFECT & FRACTIONAL STATISTICS (cont’d.)

@ We can consider statistics of holes using an effective action of the form

k
sz/ﬁﬂﬂwwwmh+@(w—%wwmm”
@ The electromagnetic current is

e
J¢ = ——e*Moua,
27

where [# denotes electromagnetic current.

@ The equation of motion for the auxiliary field a,, is
k e
— I“’aay o B HV‘laVAa =0
T fo ] 2"

@ We then see that
JH € n ¢ wra g pa
=t —-—c VAT
kT 2mk

Choosing k = 2p + 1 we see that we can reproduce the Hall conductivity correctly in the
absence of holes.

@ The first term then shows that the charge per hole is e/k.
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FRACTIONAL QUANTUM HALL EFFECT & FRACTIONAL STATISTICS (cont’d.)

@ For a pair of well-separated holes we can take
=t 8P (x — wy) + wh 5P (x — w,)

@ Focusing just on the holes, the action becomes

k .2 .2
Shole = 4= /de 0, dy00 + /dt a, (1)t + a, (wy) it + ol L2
4 2 2
@ The time-component of the equation of motion for for a,, is
Bzoz — Oz, = —i% (5<2) (x—wy) + 6@ (x - wz))
with the solution

a_fi(1+1>aii(1+1)
T % \z—w z—w)’ Tk \z—w  z—w,

The coincident point w; = w; has to be excluded for consistency. We also used

0: —— =10; =76 (x —w)

z—w zZ—w
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FRACTIONAL QUANTUM HALL EFFECT & FRACTIONAL STATISTICS (cont’d.)

@ We will also use the 4y = 0 gauge so that the action for the holes simplifies to
5= /dt [ (W11 + Wt2) + Ay W1 + Az, W1 4 ey W2 + G, W02

where we have removed the singularities at the poles. Thus

i i1
T 0k wy —wy T2k ) — @y
i i

27 ok wy —wy 27 0k Wy — @y

@ The coincident point w; = w; has been excluded, so the closed path of one hole going
around the other is not contractible. = II;(configuration space) = Z # 0.

@ With w, fixed,

_ i Wy — Wy
da=0 f = g, d odin =d | — log | ——=
a or a = ay, dwy + ag, dW {Zk Og(ﬁzl—i}2>}
@ ais not exact since

2
}{u - #0, C encloses wy
c k

V.P. NAIR Geometric Quantization October 6-10, 2014



FRACTIONAL QUANTUM HALL EFFECT & FRACTIONAL STATISTICS (cont’d.)

@ The Hamiltonian corresponding to the action for holes is

1 . .
H= Em (ﬁilwl + Z?Jz’lbz)

@ From the action we also identify the operators

. .0 . )
min = —i— —ap miy = —i—— — dw
8w1 v Bwl 1
miwy = —i— —ag mivy = —i— — ay
0y 2 w 2

@ Write the wave function as

1 _
W(x1,x) =exp | — log B ®(x1,x2)
2k 1 2
@ The action of H on & is

1 o 0 o 0
Ho=—-—([——+——) &
2m (87[)1 871’1 + 8ZU2 8@2)
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FRACTIONAL QUANTUM HALL EFFECT & FRACTIONAL STATISTICS (cont’d.)

@ We can consider the exchange of the two holes as due to a rotation of the two points by 7
followed by a translation to bring them back to the same points. We take ® to be
symmetric under exchange. As for the phase factor the translation does not change it. The
m-rotation leads to

U(xy,x1) = e /M W(xy, 1)

With k = 2p + 1, we see that the two holes do display fractional statistics.
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FLUID DYNAMICS

@ Lagrange’s approach
® Newton’s equations for N point-particles — coarse graining using a smooth
density function — fluid dynamics
@ Point particle = a unitary irreducible representation (UIR) of the Poincaré group
@ Classical action which upon quantization gives a UIR of a group = A co-adjoint orbit

action

Can we construct fluid dynamics as

Co-adjoint orbit action — coarse graining — fluid dynamics ?
@ Advantages:

® A single formalism where symmetries are foundational

® Gauge fields — Abelian and nonabelian Magnetohydrodynamics
® Spin, magnetic moment effects

® Gravity easily included (Mathisson-Papapetrou equation)

® Anomalous symmetries (chiral magnetic effect, chiral vorticity effect, etc.)
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THE RELATIVISTIC POINT-PARTICLE

@ For relativistic point-particles, we must use this action with G = Poincaré group, the group

of translations and Lorentz transformations

@ We consider Poincaré group = contraction of de Sitter group; this makes some traces easier

to define.

@ For de Sitter algebra, use standard Dirac y-matrices with

1 . .
Juw = I['yu,fy,,], P, = ’y—“, Poincaré = ryg — oo limit
1 1o

@ These obey the commutation rules

Uleaﬂ] =i (nuaIuB — Nup Jva — Nva ]/,LB + M ]ua)
UnvsPal = i(Mua Py — qva Py)

.4
=7 —

[Pu,Pv] 2 Juw
0

@ Asry — oo we get the Poincaré limit.
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THE RELATIVISTIC POINT-PARTICLE (cont’d.)

@ A general element is given by

g=exp(ivax®/r) A, A=B(p)R

1 po+m G-y

V2mlpo+m) | .5 py+m

B(p) =

A is an element of the Lorentz group, R is a pure spatial rotation generated by J12, J23, J31,

and m = /p2.
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THE RELATIVISTIC POINT-PARTICLE (cont’d.)

@ The action is given by

/d'rTr(70 -1 dg) +iETr(]12g*1dg) -
1o 2

Using ByoB~! = v p. /m and taking ) — oo, we find, for the Poincaré group,
—/dTp“k“-i-iZ/dTTr(EsA_lA)—7-[, T =

@ 7 generates T-evolution, so we should set it to zero as a constraint on quantum states.

This leads to the wave equation.

@ The addition of the term ¢ A, ¥* leads to relativistic charged point-particle dynamics, with

magnetic moment (¢ = 2) and spin-orbit coupling.
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GENERALIZING TO FLUIDS

@ Consider the point-particle # la WoNG again. Take a collection of particles indexed by .
S= fin/dt Tr(o3g~'8) — S= fi/dthATr(agg;\lgA)
by

@ We can take the continuum limitby A - %, 3", — [d®x/v, ny/v — p(x).
@ This leads to
5=ﬂ/}%pnww49
where ¢ = g(¥, ).

@ This suggest the relativistic form

S=4/Wﬁww*%9

@ The difficulty for Poincaré is about what replaces x*. Only 3 of the 4 components are
independent; further, role of diffeomorphisms versus translations in the Poincaré group is

not clear.
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THE LAGRANGIAN FOR ORDINARY FLUID DYNAMICS

@ Ordinary fluid dynamics can be described by a Poisson bracket system

[p(x),p()] = 0

050 (x - y)

[vi(x), p(v)]

(), 5] = —% 5 (x - y)

wij = (8i‘llj — 8]ZJ,)

1
H= /d3x [Ep 4+ V(p)]
@ We get the usual equations of fluid motion with pressure p = p% -V

@ The PBs can be summarized as

SF. (6G\ &G . [SF\ wj 6F JG]
F.Gl= [ [ g (25) -8y (25) - 2iotoe
IF. 6l /[5/0 1<577i) op 1(5711') p 0v; 6v;

for any two functions F, G.
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THE LAGRANGIAN FOR ORDINARY FLUID DYNAMICS (cont’d.)

@ The helicity C is given by

1 .
/ ko, dyvr = CS term for v;

" 8
@ The helicity Poisson-commutes with all local observables, [F, C] = 0 for all F
= Cis superselected.
@ Usually if [¢7, &P = K, the Lagrangian is of the form A, £ §A = % Ka_blég" A SEb.
Here K is not invertible, 6C/dv; is a zero mode.
This is the difficulty in writing down a Lagrangian.
@ The solution is also clear: We must fix the value of C and seek a parametrization for the
velocity which keeps the same value of C.

@ Such a parametrization exists. It is the so-called Clebsch parametrization,
v = 0i0 + a9

0, o, B are arbitrary functions.
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THE LAGRANGIAN FOR ORDINARY FLUID DYNAMICS (cont’d.)

@ For v; parametrized in terms of well-defined 6, o, 3,
C= / (total derivative) = 0

@ A suitable action which gives the PBs is now (C.C. LiN)

. . 1
S:/p@-l—pa,@—/{ipvz-l-V}
@ We can also write this as

s:/]“ (8.0 + 2 8,8) — /[IO I +V]

J° = p; elimination of the auxiliary ]’ leads to the previous version. | J° is a constant.

@ The relativistic generalization is
5= /]u (040 + @ 8.8) — /F(n)

F(n) =n+V(n), n? =] = (2 -JT.
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GROUP-THEORETIC DESCRIPTION OF FLUIDS

@ The lesson from this is to treat

e Translational part of action — Clebsch parametrization

® Rest of the action in terms of the co-adjoint orbit version

@ The general action is thus
) i, _ . . _
S = /d4x []“ (80 + aduB) — ;]‘(‘S) Tr(Z3 A~19uA) + IZ ]Z)Tr(qag D, 9)
a
—F({n})] + S(4)

@ Generally, we must have different currents j#, ]‘(‘S ) ]’(a ) for mass flow, spin flow and the

transport of other quantum numbers.

@ Coupling to gauge fields follow from covariant derivatives on the group elements
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GROUP-THEORETIC DESCRIPTION OF FLUIDS (cont’d.)

@ F({n}) depends on all invariant combinations of the currents and characterize the nature

of the fluid, n = \/j# ., na =, /j?a) Juu (a)s €tC.
@ The group-valued fields are related to flow velocities and currents and given by the

equations of motion,

18F
on ju = ub+adup
1 oF . . 1
o @ = iTr(qag™ Dpg),  ete.

Remark: The Clebsch parametrization can also be written in a “group” form,
—iTr(o3¢71dg) = do + o dp
where g € SU(1,1) (or SU(2)),

1 1 u ¢0/2 0 T

= — o= ——-" 6——110 (u/m)
§= T i1 0 e—i9/2]’ T Q-m) T 2 8
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FURTHER COMMENTS

@ In terms of the group-theoretic version, the helicity is given by the topological invariant
C = constant /Tr(g’l dg)®

@ Another motivation for the action as we formulate it is:

® The full quantum dynamics for a state with density matrix p is given by the action

S:/dtTr [po (uTiaa—Ltl —UTHU)}

® The variational equation for this is

® The canonical 1-form for this action is
A=iTr(po U' 6U)

where U includes all possible observables.
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FURTHER COMMENTS (cont’d.)

® Consider a subset of transformations (symmetry transformations which can survive

into the hydrodynamic regime),

SU = —i(t,U) 864 + other transformations

neglect

® This corresponds to
A=Te(Upo U ta)66% = T4 560, Ta(0) = Tr (pta) = (ta)

T will have appropriate group composition/commutation properties.
® ¢’s are essentially collective variables for the theory. The action (at the level of the

0’s) which gives this A is the co-adjoint orbit action
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FURTHER COMMENTS (cont’d.)

@ Now a comment about the Clebsch variables:
® Translational degrees of freedom x* can be used with the Poincaré group.
o If we keep the ¥* as fluid velocity, then we get the correct fluid equations, with no
pressure.

¢ To change to diffeomorphisms, look at the algebra
M(&)ME) = M(Ex &), (Ex&) =oe" — o
This can be realized by
Ji = m0ip1 + m0ipr + - -
for any number of pairs (7, ;).
® We need two pairs for a complete characterization in 3 spatial dimensions.
® Hence, we can argue
Diffeomorphism symmetry =  SU(2) or SU(1,1) symmetry

for the pairs (7, @), i=1,2
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FURTHER COMMENTS (cont’d.)

® 71,1 could be viewed as modulus and phase of v, ¢)*. How do we interpret the
extra fields?

e For vorticity, we need to compare the velocities of nearby particles. Inside each
coarse-graining unit (around, say, ¥), we must have distinct fields representing these
particles.

e 1(x) and ¥ (x 4 €) must be counted as independent fields since we want to replace

them by fields at X upon coarse-graining.

Coarse-grain
unit,
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WHAT IS TO FOLLOW

@ We will discuss 3 examples
e SU(2) internal symmetry (Nonabelian Magnetohydrodynamics)
® Magnetohydrodynamics including spin, magnetic moment and spin-orbit effects
® Spin and coupling to gravity

@ We will also discuss generalization to include anomalies

@ We will also discuss applying the same formalism to braiding of vortices in a p-wave

superconductor.
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GENERAL ION FOR FLUIDS

@ The general action is thus
. i, _ . ) -
S = /d4x []u (00 + adyuB) — 1]‘(‘5) Te(S3 AT10uA) +i ) i Tr(ag ™' Dy g)
a

—F({n})] + S(4)

@ Structure of action

Transport Current Fields

Mass flow * 0,a B

Spin flow ]’(‘S ) Lorentz group parameters A
Internal charge flow jﬁz ) Internal symmetry group element g

@ Generally, we must have as many currents as the rank of the group, the corresponding
densities are canonically conjugate to the diagonal angles.

@ Any further relations among currents would “constitutive” relations, specific to the
physical system.

@ Coupling to gauge fields follow from covariant derivatives on the group elements
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SU(2) MAGNETOHYDRODYNAMICS

@ Consider the action (BisTRoviC, JACKIW, LI, NAIR, P1)

S = [ @ub+adu) i [ Ti(ag T Dug) ~ [ Fon) + S
D.g = Oug+Aug Ay =—it" A%, =10

JE = n, UM, u? =1

* o= nut, =1

@ We also include a background field which couples to the color charge.
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SU(2) MAGNETOHYDRODYNAMICS (cont’d.)

@ The current which couples to Aj, is given by
[t =Te(osg7 ) 1 = Q" ", Q' =Ti(o3g7't'g)

This is the current for the nonabelian symmetry and has the Eckart form.

@ Some of the equations of motion are

oujt =0
(DuJ*)* = 0
nukdu(uyF') —nd,F' = Tr(J'Fw) (“Euler equation”)

@ The first two equations lead to the fluid generalization of the Wong equations

W (DuQ)" = (DoQ)" + i - (DQ)" =0
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SU(2) MAGNETOHYDRODYNAMICS (cont’d.)

@ We also have
O TH =Tr (JFFuv)

TH¥ has the perfect fluid form.
@ The nonabelian charge density p = p’t* (which is the time-component of J**) transforms,

under gauge transformations, as
p—p =h"lph, h e SU(2)
@ We can diagonalize p at each point by an (¥, t)-dependent transformation, pgise = p003.
Then p = & Pdiag 8—1’ or
a __ T —14ay _ 0 T -1 “
pr=poTr(gosg™ 1) =j Tr(gos g™ 1)

@ g diagonalizes the charge density at each point. The eigenvalues are gauge-invariant and
are represented by n. ¢ describes the degrees of freedom corresponding to orientation in

color space. Under a gauge transformation, g — h~1 g.
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SU(2) MAGNETOHYDRODYNAMICS (cont’d.)

@ There are two (related) charge densities, /® and the nonabelian charge density p* = J*°.

@ The basic (new) Poisson brackets are

@ @3y = 0

0@ 5@ = -ige) (2) -
W@AD) = [0y
W@ s = -i(7)s@ oty

@ Remark: These equations of motion and charge algebra have some points of overlap with

the work of GIBBONS, HOLM, KUPERSHMIDT

@ A notable feature is (Dal, NAIR):

Since IT3[SU(N)] = Z, there are skyrmion-type (topological) solitons in any

nonabelian magnetohydrodynamics
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ABELIAN MAGNETOHYDRODYNAMICS WITH SPIN

@ Consider a special case where mass transport and charge transport are described by the

same flow velocity.
@ This applies when we have one species of particles with the same charge.

@ Further, for dilute systems, if we neglect the possibility of spin-singlets forming (and

moving independently), we can take spin flow velocity ~ charge flow velocity

@ The action for this case is (KARABALI, NAIR)
S =S(A) + /d4x [j" (00 + BB + eAy) — ij“ Tr(S5 A8, A) — E(n, 0')]

A = BR contains the same velocity u# as in j* = nut.

@ Fdependsonnand o = S*¥ F,,,, where S* is the spin density,

i

S = TS AT A, = LB
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ABELIAN MAGNETOHYDRODYNAMICS WITH SPIN (cont’d.)

@ Having the same flow velocity leads to a requirement

2 OF OF

n on do
This is the fluid analog of the requirement of ¢ = 2 for point-particles.
@ The equations of motion are the Maxwell equations +

16e

U0 (F uy) — 8,F = eud Faxv = 4 O s*@(sps FSS)xg + -
e
WS = & [SMFaw =S ] + = [52f — 52 fu]
—1F6f(uusA S ))0rSPP(SFS —FSS) s + ---
OF
= U\ F —u, O, F =2
foaw ux Uy O o
(SES—FSS)ag = SLFpr S —FfSpr ST

Spin density is subject to precession effects due to pressure gradient terms as

well as due to the external field.
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INCORPORATING ANOMALIES

@ First consider anomalous U(1) symmetry, the fluid dynamical equations due to Son &

SUROWKA.

@ By use of the Clebsch parametrization, we can write the action (ABANOV, MONTEIRO, NAIR)
. c ;
S = /d4x {]“(V,J +AL)+ ge‘“’o‘ﬂ (Au V0oV + Vy AvBaAg) — ) —> + P(,u)}

Here V,, = 0,6 + a0 .

@ This leads to the anomaly equations

TH = unU*U, + 6% P
o= nUP 4 eved g plly o (puUg) + %uuy BaAg
Tty = Exal'.  Ou" = FuFap
V+Au = —ply
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INCORPORATING ANOMALIES (cont’d.)

@ Now we turn to the standard model and the 't Hooft argument for the Wess-Zumino

action for anomalies

Confinement

Fluid

Wess-Zumino
Action T'yyz

Anomaly
Cancellation

Spectators ——————— Spectators —————— Spectators

@ A similar argument for the fluid phase suggests an effective action for anomalies in terms

of fluid variables. What is this action?
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INCORPORATING ANOMALIES (cont’d.)

@ Since we have formulated fluid dynamics using group variables, this is easy. We can use

the same I'yyz but using fluid group element instead of meson fields.

@ The suggestion is (NAIR, RAY, ROY)
ey A3 ) As A3
s = —1/ |:]§L Tr (?3& 1DugL) +j§ Tr (78& lDﬂgL) + K Tr (fgxlDng)

s _ . _ _
+ kG Tr (78 $x'Du gR> +j5 Tr (gL D, gL) + ki Tr (gR D, gR)

— F(n3, ng, ng, m3, mg,mo) + Sym(A) + Tyz(Ar, A, g1 g})

@ TI'wz(AL, AR, 8L g;'{) is the standard Wess-Zumino term I'wz (Ar, Ag, U) with U = g;. g£.

@ There are other ways to incorporate anomalies (SON & SUROWKA; SADOFYEV & ISACHENKOV;

ABANOV et al; WIEGMANN; + many others); an approach somewhat similar to ours is by SHU Lin.
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INCORPORATING ANOMALIES (cont’d.)

@ In full it is given by (WITTEN; KAYMAKCALAN, RAJEEV, SCHECHTER; + ...)

4872

1
Twy = —
A YT

/Tr(duu—1)5_ N / Te[(Ay dAy + dAy Ay + A3 dUU™]
D

_ ’N2 / Tr[(A dAg + dAg A + A3) U~ 1dU]
487> J m
+ N 5 / Tr[AL dUU A dUU ™Y — AR U~1dU Ag U~ 1dU]
9612 J m
iN ~1\3 “113 —1 —1
+ 82 Tr[AL(AUU )+ Ar (U™ dU)° + dAL AU AR U™ — dAgrd(U~ ") AL U]
gs M
iN
+ 4;—2 / Tr[Ag UL AL U(U™dU)? — Ap U AR U~ H(dUU— 1)
48 — / Tr[(dAR AR + ARdAR) U™ Y AL U — (dAL AL + AL dAL) UAR U™Y

482/ Tr[AL UAR U A dUU—" + Ag U~ AL U Ag U~ tdU)
482/ Tr[AY UTPAL U — A} UARU ™ + JUARUTT AL UAR U Ay

with U = g1, gR.
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ANOMALIES & CHIRAL MAGNETIC EFFECT

@ This action gives the chiral magnetic effect (& other anomaly related effects) for all flavor
gauge fields and chemical potentials (Ag components become the chemical potentials 1)

@ What is the chiral magnetic effect? (KHARZEEV, MCLERRAN, WARRINGA, FUKUSHIMA + ....)

= Charge separation

62 =

In the quark-gluon plasma, in the pres- Jo= 7 Vé-B
™

ence of a magnetic field, because of the

. = Chiral induction
chiral anomaly

e2

@ Here 0 is like the f-angle or n’ field. In a plasma, 6 — %(,uL — UR), SO
&2
5 (1L — pr) Bi

i="gm

Chiral asymmetry leads to an electromagnetic current
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ANOMALIES & CHIRAL MAGNETIC EFFECT (cont’d.)

Reaction

107G Highest in lab

before RHIC
eB =
Positive Charges 105G Magnetic stars
107 G RHIC

X (defines ¥g)

@ The electromagnetic current leads to charge separation which can be seen in asymmetry of

charge distribution of final state particles.
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ANOMALIES & CHIRAL MAGNETIC EFFECT (cont’d.)

@ There is some experimental evidence for this.

-3
= 3?("0'"I'"'I""I""I"_
B? C STAR AuAu 200 GeV N
- Centrality 30-50% ]
‘\.I 2: —e»— same charge ]
_e_& C —=— opp charge Bl
+ 1r
35 C
0 . — T o
8 05 ....”' LY 1, :
~4b A E
s Y ]
2f *&HH [
N T T T
30" o5

1 1.5 2
(pt' SR B)l 2 (GeVic)

(STAR collaboration)
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ANOMALIES & CHIRAL MAGNETIC EFFECT (cont’d.)

@ Going back to the WZ action, the electromagnetic current is given by (previous refs, also

CALLAN & WITTEN)
o= WaﬂTr[Q(ayuu—laauu—laﬁuu—l
7T
+u—1ayuu—1aauu—185w]
@ vap 2 1 g1 1 1
i e PO, ATE | Q@sU U+ UT95U) + S (QIU QU

~QUQAEU)]

@ We can restrict to two flavors by choosing
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ANOMALIES & CHIRAL MAGNETIC EFFECT (cont’d.)

@ The current is now

2
e . e
]l—L = Iéli + 1872 €HuaﬁT1‘(Iu Ta Iﬂ) + 11676#1162’8 8,,Aa Tr [(ESL —+ ESR) IB] —‘,—]g
& 1
]g = —meuuaﬁ OvAa 339 2+ ZTI‘ (E3L YR — 1)
Ts =8 '0p8L — 8% Op8R, SaL =gp 'o38L, Yar = gx 038k

@ If we further restrict to g; = gr, we get

2

o= _Ziﬂewaﬁ(ayAa)aﬁe
62

Ji = —m(#L—#R)Bi

This reproduces the chiral magnetic effect which was originally calculated using Feynman

diagrams (KHARZEEV, MCLERRAN, WARRINGA, FUKUSHIMA + ....).

@ The full set of equations describe hydrodynamic transport of flavor charges.
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THE CHIRAL ISOSPIN EFFECT

@ The anomaly term I'y also has terms proportional to Z,,, so there is also an induced
isospin current (CAPASSO, NAIR, TEKEL).

@ The relevant term is
Ne?
Twy = —6?(cot 26) / P78, A 850
@ This leads to

e rvo
JAH = fS?(COSZOW) e PF,q 50

e .
]3M = Q(ML — IR) B

@ In terms of pion fields, J3# ~ — % frOMTI0 4 - - . So we can interpret this as a pion field of
gradient
I’ = —

e .
" (w — ur)B
ey (pr — pr)

@ This can manifest itself as an asymmetry in the neutral pion distribution.
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ANOMALIES & CHIRAL VORTICITY EFFECT

@ Generally, there is a contribution even when the background fields are zero.

@ If we eliminate the group elements in favor of velocities, we get

2
= T i Oua T (e + ) Iy

1 _ _
oz 0T DagL Sk Opsr)

e OF \2 OF \?
+ﬁe’“’°‘5 [(8713) uzr y OallzL g — (8713) M3Ru8au3R3} .

A left-right asymmetry with nonzero vorticity can generate an electromagnetic current

@ The standard model can have mixed gauge-gravity anomalies in some restricted cases.
There are other anomaly related effects which can arise. We will not discuss them here (See

notes and references).
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Thank You
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